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Abstract 

 Drought stress is one of the most critical abiotic factors limiting plant growth and agricultural 

productivity worldwide. Water deficit affects plant physiological, biochemical and molecular processes, 

often leading to stunted growth and reduced yield. To mitigate these effects, sustainable and 

environmentally friendly strategies are gaining importance. This review focuses on the potential of plant 

growth-promoting bacteria (PGPB), silicon (Si), and superabsorbent polymers (SAPs) in alleviating drought 

stress in plants. PGPB enhance drought tolerance by improving root development, increasing nutrient and 

water uptake and modulating stress-related phytohormones. Silicon contributes to drought resistance by 

improving structural integrity, reducing water loss and activating antioxidant defense mechanisms. SAPs, 

due to their high water-retention capacity, improve soil moisture availability and help maintain plant water 

status during prolonged dry periods. The use of these agents offers a promising integrated approach for 

improving drought resistance in crops. This review synthesizes recent advancements, highlights underlying 

mechanisms and discusses future prospects for their application in sustainable agriculture under drought 

conditions. 
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Introduction 

 The increase in worldwide population and drastic climatic changes haunt the food security (Lesk et 

al. 2016). The present scenario shows that plants are continuously getting bare to several stress conditions. 

Water is essential factor in agriculture field however it is limited resource (Wang et al, 2012). Drought stress 

is major abiotic stress affecting food security for worldwide increasing population and is predicted to 

severely affect plant growth by 2050 for more than 50 % of land (Vinocur and Altman 2005; Kasim et al. 

2013 Hashem et al., 2017). As per WHO affects around 55 million people worldwide (WHO 2020). Drought 

stress may be short, moderate, severe and extremely prolonged, affecting overall crop growth and yield 

(Bottner et al. 1995). The main cause of drought stress is changed pattern of rainfall and decreased 

precipitation (Lobell et al., 2011). The plant water relationship is affected at whole plant and cellular level 

thus leads to specific plus nonspecific physiological response (Beck et al. 2007). Drought stress results in 

reduction in leaf expansion, stem elongation ((Engelbrecht et al., 2007), water potential, photosynthesis 

(Yang et al. 2010; Alcazar et al. 2011), ionic and nutrient imbalance (Engelbrecht et al., 2007). Drought 

stress induced elevated level of reactive oxygen species (ROS) affect redox status of plants resulting in 

damages due to oxidation of proteins, lipids, nucleic acid and photosynthetic pigment (Nahar et al., 2017). 

Drought stress reduces growth of several important crops such as wheat, maize, barley, potato, pigeon pea 

and rice (Rampino et al. 2006; Kamara et al. 2003; Samarah 2005; Lafitte et al. 2006; Hijmans, 2003; Nam 

et al., 2001).  

Effect of drought stress on plant growth 

 Drought stress induces several morphological, physiological and biochemical changes in plants thus 

affect overall plant growth and productivity (Noman et al. 2015; Ye et al. 2012). Drought stress affects cell 

membrane hence maintenance of cell membrane integrity and stability is vital for development of drought 

tolerance in plants (Bajji et al., 2002). Drought stressed plants have altered elasticity of cell wall, excessive 

toxic metabolites and reduced photosynthesis consequenting in plant death. Drought stressed plants have 

altered proteomic and biochemical status due to changes in gene expression (Caruso 2009, Alvarez 2008, Li 

2008, Carmo 2009). 

Presence of sufficient water level is essential for plant survival in drought condition. Drought 

stressed plants maintains high water level through osmotic adjustment (Osakabe et al. 2014). However 



© 2025 IJRAR May 2025, Volume 12, Issue 2                          www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-
5138)  

 

IJRAR25B3509 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 490 
 

reduced water potential and water contents under drought stress have been reported in several plants (Ali et 

al. 2013b; Noman et al. 2015). Plants requires sufficient amount of essential nutrients for growth and 

development. Drought condition affects soil nutrients availability and its transport in plant as water carries 

the nutrients to plant root. Drought stress reduces diffusion and mass flow of nutrients, which are water 

soluble such as calcium, magnesium, nitrate and sulfate (Selvakumar et al. 2012).  

The main response to drought condition is arrest of plant growth. Under drought stress the cell 

growth is severely impaired due to reduced turgor pressure (Taiz and Zeiger, 2006). Drought stress inhibits 

cell division and enlargement (Jaleel et al, 2009), reduces plant height (Bunnag and Pongthai, 2013) and 

tillers number (Bunnag and Pongthai, 2013). Maize plant growing under water limiting condition showed 

decreased height and leaf size (Khan et al. 2015). Under water limiting conditions fresh and dry weight of 

plants gets significantly decreased (Zhao et al. 2006). 

Seed germination is most important step in the formation of seedling. Drought condition is major 

stress which delays or prevents process of seed germination (Hubbard et al. 2012; Shi et al. 2014). The 

acclimatization of germination and establishment of seedling to environmental condition is necessary for 

plant propagation (Zhang et al. 2005). The drought stress originated reduced germination and seedling 

growth has been reported in important crops such as Oryza sativa L., Pisum sativum L. and Medicago sativa 

L. (Okcu et al., 2005; Manikavelu et al., 2006; Zeid and Shedeed, 2006). Plants subjected to drought stress 

have inhibited shoot growth which decreases plant requirement of metabolites and mobilize them for 

production of compounds needed for osmotic adjustment (Hsaio and Xu 2000). Okcu et al. (2005) reported 

impaired germination and seedling growth of pea subjected to drought stress. These results corroborates 

with Zeid and Shedeed (2006) who reported reduced germination, length and weight of alfalfa (Medicago 

sativa) grown under water deficit conditions. 

Drought stress affects photosynthesis, an important process of plant growth and productivity. 

Drought stress induced decrease in chlorophyll content has been reported in Carthamus tinctorius (Siddiqi et 

al., 2009), Paulownia imperialis (Ayala-Astorga and Melendez, 2010), Jatropha curcas (Evandro N. Silva 

2010) and bean (Beinsan et al., 2003). The decrease in rate of photosynthesis in drought condition is due to 

the decrease in photosynthetic enzymes activity, decreased efficiency of photosystem II, stomatal closure 

(Centritto et al, 2009)., reduced leaf expansion and leaf senescence (Wahid et al., 2007). Drought stress 
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makes the plants more vulnerable to photo damages due to stomatal closure, which decreases availability of 

CO2 
 (Lawlor and Cornic, 2002). 

Drought stress results in oxidative stress in plants because of the amassed synthesis of ROS due to 

disruption in photosynthesis, increased rate of photorespiration which alters cell homeostasis. ROS such as 

hydroxyl radicals, hydrogen peroxide and super oxide radicals are normally generated in very less amount 

under non stress conditions in several plant organelles (Apel and Hirt 2004).  Accumulated ROS increases 

lipid peroxidation, resulting in DNA, proteins and lipid damages (Pompelli et al. 2010). Elimination of ROS 

and prevention of drought stress originated oxidative stress is is effective strategy for development of 

drought tolerance in plants (Bartels 2001) Plants are equipped with enzymatic (catalase (CAT), glutathione 

reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase (APX)) and non-enzymatic (ascorbic 

acid, glutathione and cysteine) defense system which scavenge ROS thus protects them against drought 

stress induced elevated level of ROS (Miller et al. 2010).  

The most common response of plant to drought condition is osmotic stress because of the imbalance 

in water level (Vinocur and Altman 2005).  Osmotic stress results in different effects in drought stressed 

plants at cellular level. It limits plant growth due to reduced rate of photosynthesis, resulting in increasing 

production of ROS that damages cell components. Severe drought stress reduces volume of cytosole and 

vacuole because of the cell dehydration (Bartels and Sunkar 2005). Drought stress stimulated osmotic stress 

is mediated by osmolytes synthesis thus reestablishes homeostasis (Zhu 2002). Plants adapt to drought stress 

condition by accumulating osmolytes such as trehalose, glycine betaine and proline (Vendruscolo et al. 

2007; Rodriguez et al. 2009). Drought tolerance in plants is indicated by an increased level of amino acids 

(Zhu 2002) which is reported in drought stressed plants including wheat, sorghum and pepper (Yadav et al. 

2005). Increased level of proline gives indication of presence of drought stress in plants (Valentovic et al. 

2006). 

Plants tolerate drought stress condition by multiple mechanisms such as antioxidant production and 

osmolytes synthesis (Umezawa et al. 2006). Abscisic acid is hormone, produced by drought stressed plants 

which coordinates several strategies of plants for protection against drought condition (Hubbard et al. 2010). 

Plants may increase root growth by improving plant water acquisition (Gowda et al. 2011) or reduce use of 
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water by closing stomatas and slowing growth (Lopes et al. 2011) or may accelerate flowering stage before 

beginning of stress (Neumann 2008).  

Strategies to alleviate drought stress 

Plant growth promoting bacteria 

 Bioinoculants improves quality of soil as compared to chemical based fertilizers (Kumar et al., 

2016). PGPB are potential candidates which modulates physiological response to drought hence ensures 

survival of drought stressed plants (Manjunatha et al. 2022, Marasco et al. 2012).  

Ethylene is plant hormone involved in plant growth and development plus defense against several 

abiotic stress conditions at low level (Kazan 2015). When plants are exposed to stressful condition an 

elevated level of ethylene is produced (Abdelaal et al. 2021) hence this hormone is widely known as stress 

ethylene, which hinders overall growth of plant. After the exposure of plants to stress condition, the stress 

ethylene synthesis occurs in two peaks, small first peak of ethylene is responsible for expression of plant 

defense genes while the large second peak known as stress ethylene is deleterious to plant growth and 

development (Glick et al. 2007). PGPB have ability to produce ACC deaminase enzyme which metabolize 

ACC, an immediate precursor of ethylene into ammonia and α-ketobutyrate hence reduces stress ethylene 

level in plants (Shaharoona et al. 2006).  The inhibitory effects of drought stress on growth and yield of pea 

are eliminated by ACC deaminase expressing PGPB (Arshad et al., 2008). Mayak et al. (2004) examined 

reduced ethylene level and improvement in weight of drought stressed tomato and pepper plants bacterized 

with ACC deaminse producing Achromobacter piechaudii ARV8. Similarly inoculation of drought stressed 

pisum with ACC deaminase producing PGPB Pseudomonas spp. results in longer root development which 

increases plant water uptake from soil (Zahir et al. 2008). Similarly, drought stress suffering wheat plants 

inoculated with ACC deaminase producing PGPB have increased shoot biomass and increased root length 

(Magnucka and Pietr 2015). 

PGPB involves some biochemical and physiological changes in plants hence induce drought 

resistance such as antioxidants defense, production of plant hormones such as indole-3-acetic acid (IAA), 

gibberellic acid, abscisic acid (ABA) and cytokinins, synthesis of ACC deaminase enzyme, 

exopolysaccharides and induced systematic tolerance (IST) (Khalid et al. 2006, Kim et al. 2012;      
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Timmusk et al. 2014). IST is microorganism originated physicochemical changes in plant, which ensures 

improved tolerance to abiotic stress conditions (Yang et al., 2009).  

Plant hormones such as IAA, gibberellic acid, cytokinins and ABA are essential for plant growth and 

development (Egamberdieva, 2013) and helps the plants to survive under stress conditions (Fahad et al., 

2015). PGPB have an ability to synthesize plant hormones which stimulates growth and division of plant 

cells to develop tolerance against stress conditions (Glick and Pasternak, 2003). Reduced ethylene level by 

ACC deaminase and promotion in plant growth by bacterial auxin has been reported by Belimov et al. 

(2015) when potato plants exposed to drought conditions were inoculated with PGPB. Furthermore, 

Azospirillum lipoferum producing gibberellic acid and ABA, mitigates drought stress in maize plants (Cohen 

et al., 2009). Furthermore P. putida H-2–3 with gibberellic acid producing ability when inoculated to 

drought stressed soyabean plants improves plant growth (Kang et al., 2014). IAA producing PGPB mediates 

interaction between producing bacteria and plant plus protects bacteria from stressful environmental 

conditions.  In an experiment carried by Bianco et al. (2006) about 50 % of bacterial cells gets died when 

exposed to osmotic stress, while treatment of IAA showed 30 % death of bacterial cells. The 

exopolysaccharides produced by PGPB increases soil aggregation, maintains high water potential around 

bacterized plant roots which leads to increase plant nutrient uptake hence increases plant growth and helps 

the drought stressed plants for survival (Selvakumar et al., 2012). Bacterization of drought affected maize 

plant by exopolysaccharide producing Pseudomonas aeruginosa, Proteus penneri and Alcaligenes faecalis 

exhibited increase in proteins, sugar, proline level and decrease in antioxidant enzyme activity (Naseem and 

Bano, 2014). Exopolysaccharide protects PGPB and plants from desiccation as it holds the water in 

microenvironment and releases water slowly in surrounding soil hence dries up very slowly (Hepper, 1975). 

Exopolysaccharide production also increases rhizospheric competence of PGPB which results in direct 

effect of plant growth promoting properties of organism on plant growth and productivity (Bhise et al. 

2017).  Some PGPB produces phytase enzyme which solubilize phytate compounds thus make the soluble 

phosphate available to plants which again help the plants for their growth under stress conditions (Kumar et 

al. 2016b). Abdelaal et al. (2021) reported improved height and weight in drought stressed soyabean plants 

added with Pseudomonas. Plants suffering from drought condition respond by increasing abscission and 

senescence of older leaves, the process also called as leaf area adjustment (Gepstein and Glick 2013), 
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however elongation in plant roots occurs to reach ground water for plant need (Brunner et al. 2015). For 

continuous growth of plant under drought stress, maintenance of water potential is necessary and this can be 

achieved by accumulation of compatible solute such as proline, organic acids and glycine betaine, which 

plays a vital role in osmotic adjustment. Osmolytes produced by PGPB maintains osmotic balance of plants 

thus help the plant to grow in drought stress (Vanderlinde 2010). Inoculation of drought stressed maize 

plants by Pseudomonas putida GAP-P45 showed accumulation of proline which improved relative water 

content and plant biomass (Sandhya et al., 2010). Furthermore inoculation of drought exposed tomato plant 

by Bacillus polymyxa exhibited increased proline to mitigate stress (Shintu and Jayaram, 2015). 

 PGPB activates antioxidant defense which improves cell membrane stability hence increases drought 

resistance in plants (Gusain et al. 2015). Reduced activity of antioxidant enzymes such as GPX and APX in 

Bacillus species inoculated maize plants has been observed by Vardharajula et al. (2011), developing 

protection against drought condition. In soil environment plant and bacteria communicates with each other 

by producing volatile organic compounds (VOC). These VOC activates plant gene synthesis encoding ROS 

scavenging enzymes such as CAT, SOD and GR, which in turn protects the plants against drought stress 

(Timmusk et al. 2014). Significantly reduced melondialdehyde (MDA) contents has been observed by 

(Chandra et al. 2018) in drought stressed finger millet (Eleusine coracana (L.) when supplemented with 

ACC deaminase producing PGPB pseudomonas sp. Furthermore author has also reported increased fresh 

and dry weight of shoot and root and photosynthetic pigment content in finger millet exposed to drought 

stress applied with pseudomonas sp. inoculum. Batool et al. (2020) also reported improved chlorophyll, total 

soluble sugar and protein contents in drought stressed potato plants inoculated with B. subtilis HAS31 

Silicon 

Silicon (Si) is second mainly abundant element of earth crust accounting for 28 % of total earth crust 

(Sommer et al. 2006). Si considered as nonessential for plant growth and development (Luyckx et al., 2017).  

However Si plays a key role in plant growth, enzyme functioning, gene expression (Vatansever et al., 2017), 

activates many processes of physiologically and metabolically important (Parveen and Ashraf, 2010).  

Plants growing in soil have Si in their tissue (Ma and Yamaji, 2008) which gets varied based on plant 

genotype and species (Ma and Yamaji, 2008). The uptake and transport of Si in plants is classified as active, 

passive or rejective. It has been reported that Si mitigates dangerous effects of abiotic stresses such as 

drought, salinity and metal toxicity (Ali et al. 2012a, 2013a; Ahmed et al. 2014a; Keller et al. 2015). 
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Inoculation of Si mitigates adverse effects of drought stress on sorghum (Yin et al. 2014), potato (Crusciol et 

al. 2009) and wheat (Gong et al. 2005). 

Si inoculation to drought stress suffering plants increases plant water contents and decreases loss of 

water by stimulating synthesis of silica cuticles double layer under leaf epidermis (Luyckx et al., 2017). 

Increase in water uptake by plant root inoculated with Si is because of the activation in amino acids and 

sugar accumulation (Sonobe et al. 2011). Under drought stress Si increases hydraulic conductance of plant 

root which increases plant water uptake and transport thus results in up regulation of transcription of several 

aquaporin genes (Liu et al. (2014). Si plays a vital role in maintenance of plant mineral balance under stress 

condition due to increased water conservation and nutrient absorption in plants (Zhu and Gong, 2014). In 

addition, Si increases membrane stability and reduces cell membrane permeability and inorganic leakage of 

stressed plant cell (Merwad et al., 2018). Si application to stressed plants maintains plant function and 

integrity of cell membrane and, improves plant growth hence mitigates stress condition (Merwad et al., 

2018).  

Plant uptake of essential nutrients is reduced in drought condition (Emam et al. 2014). Si addition in 

drought stressed wheat increases P level (Gong and Chen 2012). Furthermore Emam et al. (2014) reported 

improved P and K in drought stressed rice straw when provided with Si over non provided Si plants.  

Application of calcium silicate to drought stressed maize improved seed germination (Zargar and 

Agnihotri 2013). Si application under drought stress increases plant growth. Ahmed et al. (2011b) reported 

improved dry weight of root and shoot of drought stressed Sorghum bicolor L. inoculated with Si. 

Furthermore Hamayun et al. (2010) examined increased fresh plus dry weight and shoot length of Glycine 

max L. when applied with Si. Similarly Si inoculated drought affected rice showed increased rice grain yield 

over control (Nolla et al. 2012) and increased level of phenolics and flavonoids (Emam et al. 2014) over 

uninoculated plant. Si application increases chlorophyll contents of drought stressed plants such as soybean 

(Shen et al. 2010), wheat (Pei et al. 2010) and sorghum (Yin et al. 2014). Si induced increase in 

photosynthetic pigment contents in drought stress suffering plants might be due to the Si originated reduced 

oxidative stress and increased water potential and gas exchange. Drought affected wheat plants added with 

Si showed increased rate of photosynthesis, relative water contents and stability of cell membrane 

(Maghsoudi et al., 2016). 
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Si regulates overproduction of ROS in plants suffering from abiotic stress conditions. Kim et al. 

(2017) elucidated that the Si supplementation to stressed plants induces stress resistance in plants by 

decreasing ROS overproduction by improving antioxidant enzymes activity mainly ascorbate peroxidase and 

catalase. Reduced lipid peroxidation and H2O2 
  has been reported in wheat (Pei et al. 2010), sunflower 

(Gunes et al. 2008), chickpea (Gunes et al. 2007) and G. uralensis (Zhang et al. 2017) when added with Si. 

Si application may increase drought tolerance in plants by adjusting osmotic status of plants and 

increasing osmolyte level (Zhang et al. (2017). Inoculation of drought stressed Cucumis sativus L. by Si has 

improved tolerance in plant by improving water content and regulating proline level (Ouzounidou et al., 

2016).  

Superabsorbent polymer  

 Soil is dynamic material of great importance, playing an important role in ecosystem hence need to 

restore for sustainable agriculture (Smith et al. 2015). A soil management practice plays a vital role in 

maintaining soil quality and crop productivity (Diacono and Montemurro 2011). In order to ameliorate 

drought stress and maintain agriculture productivity, use of water absorbing soil amendments such as 

superabsorbent polymers is effective strategy (Yazdanpanah et al. 2016). 

Superabsorbent polymers (SAPs) are cross-linked macromolecules capable of absorbing and 

retaining high amount of water compared to its own weight, with difficulty to remove absorbed water even 

under pressure (Devine and Higginbotham 2005; Zohuriaan-Mehr et al. 2008). Due to high water retention 

ability SAP reduces time requirement of plant watering hence acts as energy saving soil conditioner (Bai et 

al., 2010). In addition, SAPs might retain organic nutrients present in soil and has property to acclimatize to 

drought condition (Arbona et al., 2005; Bai et al., 2010).  Inoculation of SAPs in drought stressed soil 

improved water use efficiency of crops and decreased amount of water needed for irrigation (Bettoni et al. 

2014). SAPs are used in agriculture field in the form of seed coating, additives and root dips (Zohuriaan-

Mehr and Kabiri, 2008). Supplementation of SAPs can improves properties of soil such as water holding 

capacity (Akhter et al. 2004; Yu et al. 2012; Yang et al. 2014) thus increases soil water content, water 

potential (Bhardwaj et al. 2007) and nutrients retention thus helps the plants to mitigate drought stress 

(Abedi-Koupai and Asadkazemi, 2006; Orikiriza et al., 2009).  
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Yang et al. (2017) showed enhanced water consumption in maize exposed to water deficit condition 

when provided with SAPs. Authors has explained this with two mechanisms, first is increased water holding 

capacity of soil (Yu et al. 2011) and second is absorption of water from rhizosphere which is then 

translocated to shoot and transpired via stomata, resulting in growth of maize. Similarly Chehab et al. (2017) 

reported highest total yield of olive fruits and oil in arid region of Tunisia, when olive plants were inoculated 

with SAPs (Stockosorb®660) under field condition. The author has correlated these observations with 

improved water status of soil due to addition of SAPs. 

Plant growth is directly related to water contents, when water is added to soil, it transferred to plant 

for its growth. When water supply to plant is limited it results in restricted plant metabolism (Lee et al. 

2001). Supplementation of SAPs to drought stress promotes efficiency in the use of rainwater hence 

confirms drought resistance in crops (Heschel et al., 2002). Supplementation of SAP to maize plants 

exposed to water deficit conditions showed improved photosynthesis, transpiration rate and stomatal 

conductance (Islam et al. 2011b). Furthermore Hou et al. (2018) confirmed improvement in soil properties, 

water use efficiency and increased yield of potato tuber when inoculated with SAPs. 

Conclusion: 

Drought stress continues to be a major constraint on agricultural productivity, especially in the face 

of climate change and increasing water scarcity. Addressing this challenge requires innovative and 

sustainable approaches that enhance plant tolerance to water deficit. The use of PGPB, Si and SAP offers a 

promising strategy to mitigate the adverse effects of drought stress. Each of these components contributes 

uniquely to promote plant growth in drought prone soil, PGPB through physiological and biochemical 

modulation, Si by reinforcing plant defense systems, and SAPs by improving soil water retention. Their 

application has shown potential to improve plant health, boost stress resilience and sustain yields under 

limited water conditions. Continued research into their mechanisms, synergistic effects and field-level 

implementation will be vital to fully harness their benefits. Ultimately, these eco-friendly tools can play a 

key role in developing resistant cropping systems and promoting sustainable agriculture in drought-prone 

regions. 
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