"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College Kolhapur (Empowered Autonomous)

Department of Statistics

M. Sc. II-Statistics

Semester III & IV

Syllabus to be implemented from Academic year 2024-25 (As per NEP 2020)

Teaching and Evaluation scheme One/Two- Years PG Programme Department/Subject Specific Core or Major (DSC) Second Year Semester- III & IV (M. Sc. Statistics)

Semester	Course Code	Course Title	No. of Credits
	DSC17STA31	Stochastic Processes	04
	DSC17STA32	Statistical Learning and Data Mining	04
	DSC17STA33	Python Programming	02
III	DSE17STA31	Econometrics	04
	DSE17STA32	Generalized Linear Models	04
	RPR17STA31	Research Project	04
	DSC17STA39	Statistics Practical III	04
		Credit	22
	DSC17STA41	Time Series Analysis	04
	DSC17STA42	Design and Analysis of Experiments	04
	DSE17STA41	Optimization Techniques	04
IV	DSE17STA42	Statistical Quality Control	04
	DSE17STA43	Survival Analysis	04
	RPR17STA41	Research Project	06
	DSC17STA49	Statistics Practical IV	04
		Credits	22

1) Nature of the theory question papers (4 credits):

- a) There shall be 7 questions each carrying 16 marks.
- b) Question No.1 is compulsory.
 - i) It consists of 8 multiple choice questions for 1 mark each. (8 marks)
 - ii) short note type questions (attempt any 2 out of 3) (8 marks)
- c) Students have to attempt any 4 questions from question No. 2 to 7.
- d) Question No. 2 to 7 shall contain 2 to 4 sub-questions.

2) Nature of the theory question papers (2 credits):

- a) There shall be 4 questions.
- b) Question No.1 is compulsory.
 - i) It consists of 4 multiple choice questions for 1 mark each. (4 marks)
 - ii) short note type questions (attempt any 1 out of 2) (4 marks)
- c) Question No. 2 to 4 shall be of 16 marks each.
- d) Students have to attempt any 2 questions from question No. 2 to 4.
- e) Question No. 2 to 4 shall contain 2 to 4 sub-questions.

3)Nature of Practical examination: -

Sr. No.	Component	Max marks
1	Practical examination: Examination will be of 3hour duration. There shall be 8 questions each of 12 marks, of which a student has to attempt any 5 questions.	60
2	Day-to-day practical performance and journal	20
3	Viva: Viva will be based on all practical's	20
Total		100

4)Each of the following courses have the same question paper in all examinations of M.Sc. Statistics and M.Sc. Applied Statistics.

Semester III	Semester IV
Stochastic Processes	Time Series Analysis
Statistical Learning and Data Mining	Design And Analysis of Experiments
Python Programming	-

DSC17STA31: STOCHASTIC PROCESSES

Course Objectives: At the end of the course students will be able to:

- CO1: Classify general Stochastic Process.
- CO2: Learn random walk model, gambler ruin problem and able to compute long run distribution of Markov chain.
- **CO3:** Apply the Poisson process, birth and death process and various queuing systems in real life.
- CO4: Employ branching processes to solve real life problems of stochastic nature

Unit and Credit	DSC17STA31: STOCHASTIC PROCESSES	No. of hours per unit / credits
Unit I	Definition of stochastic process, classification of stochastic processes according to state space and time domain, finite dimensional distributions. Examples of various stochastic processes. Definition of Markov chain. Examples of Markov chains, Formulation of Markov chain models, initial distribution, transition probability matrix, Chapman Kolmogorov equations, calculation of n-step transition probabilities. Simulation of Markov Chain.	15
Unit II	Classification of states, irreducible Markov chain, period of the state, random walk and gambler's ruin problem, first entrance theorem, first passage time distribution. Long-Run proportions and limiting probabilities, relation with mean recurrence time, stationary distribution.	15
Unit III	Discrete state space continuous time Markov chain, Poisson process and related results. Birth and death processes and associated cases. Renewal and delayed renewal processes, related theorems, key renewal theorem (Without proof) and its application. Simulation of Poisson process and discrete state space Markov processes.	15
Unit IV	Galton-Watson Bienayame Branching process. Generating functions and its properties, moments. Probability of ultimate extinction. Distribution of population size and association results. Simulation of branching process. Ehrenfest model. Basic elements of Queuing model. Steady state probabilities and various average characteristics for the models: M/M/1, M/M/1 with balking, M/M/c and M/G/1.	15

- 1. Bhat B. R. (2000). Stochastic Models: Analysis and Applications, (New Age International)
- 2. Cinlar E. (2013): Introduction to Stochastic Process. (Courier Corporation)
- 3. Feller W. (2008): An Introduction to Probability Theory and Its Applications. (Wiley)
- 4. Hoel P. G., Port S. C. and Stone C. J. (1987): Introduction to Stochastic Processes. (Waveland Press)
- 5. Karlin S. and Taylor H. M. (1968): A First Course in Stochastic Process. (Academic Press)
- 6. Medhi J. (2009): Stochastic Process, (New Age International Publications)
- 7. Ross S. (1996): Stochastic Processes. (Wiley)
- 8. Ross S. (2014): Introduction to Probability Models. (Academic Press)

DSC17STA32: Statistical Learning and Data Mining

Course Objectives: At the end of the course students will be able to:

- CO1: Understand and clean the big data sets.
- CO2: Apply classification methods to real life problems in various fields.
- CO3: Select and evaluate the models based on datasets using different modelling techniques.
- CO4: Understand unsupervised learning and supervised learning techniques for univariate and multivariate data.

Unit and Credit	DSC17STA32: Statistical Learning and Data Mining	No. of hours per unit / credits
Unit I	Data understanding and data cleaning, concept of supervised and unsupervised learning. Problem of classification, classification techniques: k-nearest neighbour, decision tree, Naïve Bayes, classification based on logistic regression, Bayesian belief Network.	15
Unit II	Model evaluation and selection: Metrics for Evaluating Classifier Performance, Holdout Method and Random Subsampling, Cross-Validation, Bootstrap, Model Selection Using Statistical Tests of Significance, Comparing Classifiers Based on Cost–Benefit and ROC Curves. Techniques to Improve Classification Accuracy: Introduction to Ensemble Methods, Bagging, Boosting and AdaBoost, Random Forests, Improving Classification Accuracy of Class-Imbalanced Data.	15
Unit III	ANN and SVM: Artificial Neutral Network (ANN): Introduction to ANN, types of activation function, McCulloch-Pitts AN model, single layer network, multilayer feed forward network model, training methods, ANN & regression models. Support vector machine: Introduction to support vector machine, loss functions, soft margin, optimization hyperplane, support vector classification, support vector regression, linear programming support vector machine for classification and regression.	15
Unit IV	Unsupervised learning: Clustering: k-mediods, CLARA, DENCLUE, DBSCAN, Probabilistic model based clustering, Scalable clustering, Market Basket Analysis: Association rules and prediction, Apriori Algorithm, data attributes, applications to electronic commerce.	15

- 1. Berson and Smith S.J. (1997) : Data warehousing, Data Mining, and OLAP, McGraw-Hill.
- 2. Breiman J.H Friedman, R.A. Olshen and stone C.J. (1984) : Classification and Regression Trees, Wadsworth and Brooks / Cole.
- 3. Han, J. and Kamber, M. and Pei, J. (2012) : Data Mining: Concepts and Techniques. MorganGaufmann.3rd Edition.

- 4. Mitchell T.M. (1997) : Machine Learning , McGraw-Hill.
- 5. Ripley B.D. (1996) : Pattern Recognition and Neural Networks. Cambridge University Press.
- 6. Vapnik V.N. The nature of Statistical learning theory, Springer.
- 7. Cristianini N. and Shawe-Taylor J. An Introduction to support vectormachines.
- 8. Data set source: <u>http://www.ICS.uci.edu/~mlearn/MLRepository.html</u>
- 9. Mehrika, K., Mohan, C., and Ranka (1997) Elements of Artificial neural networks. Penram international.
- 10. Hastie T, Tibshirani R, Friedmant J, (2009): The elements of statistical Learning, Springer.
- 11. Chattamvelli, R. (2015). Data mining methods. Alpha Science International.

DSC17STA33: Python Programming

Course Outcomes - At the end of this course students will be able to:

- CO1: Understand Python programming basics, utilizing Python libraries.
- CO2: Write a programme in python.

CO3: Understand use of functions and file handling in Python.

CO4: Analyse data using Python.

Unit	DSC17STA33: Python Programming	Hours Allotted
1	Introduction to Python, History of Python, Introduction to Python Interpreter and program execution, Python Installation Process, Introduction to anaconda, python variable declaration, Keywords, Indents in Python, Python input/output operations. Types of Operators, Built-in Data types: Arrays, String, List, Tuple, Set, Dictionary (characteristics and methods). Conditional Statements & Loop Conditional Statements (If, If-else, If-elif-else, Nested-if etc.) and loop control statements (for, while, Nested loops, Break, Continue, Pass statements). List comprehensions. Function in python: Introduction to functions, Function definition and calling, Function parameters, Default argument function, Variable argument function, in built functions in python, lambda function, local and global variables. File Processing Concept of Files, File opening in various modes and closing of a file, Reading from a file, Writing onto a file, some important file handling functions e.g open(), close(), read(), readline() etc.	10
2	Modules: Concept of modularization, Importance of modules in python, importing modules, Built in modules. Concept of library and its working, Data storage, manipulation, visualization and analysis using the libraries: Numpy, Pandas, Scipy, statsmodels, Matplotlip, Seaborn, Regular Expressions (RegEx), Ski-kit learn.	20

Reference Books:

- 1. Practical Programming: An introduction to Computer Science Using Python, second edition, Paul Gries, Jennifer Campbell, Jason Montojo, The Pragmatic Bookshelf.
- 2. Python for Informatics: Exploring Information, Charles Severance
- 3. Learning Python, Fourth Edition, Mark Lutz, O'Reilly publication
- 4. Introduction to Python for Computational Science and Engineering (A beginner's guide), Hans Fangohr 5. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India
- 6. R. Nageswara Rao, "Core Python Programming", Dreamtech

DSE18STA31: ECONOMETRICS

Course Outcomes - At the end of this course students will be able to:

- CO1: Understanding of simple and multiple linear regression, its assumptions, and the impact of violations of its assumptions.
- CO2: Identify heteroscedasticity using Goldfield-Quandt and White test.
- CO3: Distinguish different forms of simultaneous equations models by order and rank conditions.
- CO4: Acquaint with causality, Granger causality, Granger test for causality and applications of estimation methods.

Unit	DSE18STA31: ECONOMETRICS	Hours Allotted
1	Introduction: Definition and scope of econometrics, Methodology econometrics.	15
	Nature and source of Data for econometric analysis, Types of data: cross section, time series,	
	panel data, dummy variable, instrumental variable. Basic concepts of estimatic Review of general linear model, Ordinary least squares, generalized lea squares.	
2	Heteroskedasticity: consequences and tests: White test, Goldfeld-Quandt test;	15
	Estimation: estimation with grouping of observations, estimation of the heteroskedasticity	
	relation. Linear regression with stochastic regressors, Instrumental variable estimation, Errors in variables. Autocorrelation, Autoregressive linear regression, Distributed lag models.	
3	Simultaneous linear equations model. Example, Identification problem, Restrictions on structural parameters-rank and order conditions. Estimation in simultaneous equations model.	15
	Recursive systems. Two-Stage Least Squares estimators. Limited informati estimators.	
4	Definition of causality, Granger causality, Granger test for causality. Application of econometric methods: estimation of demand and supply function – production and cost function, consumption and investment functions.	15

References:

- 1. Apte, P.G. (1990): Text book of Econometrics. Tata McGraw Hill.
- 2. Gujarati, D.N. (2003): Basic Econometrics, McGraw Hill.
- 3. Johnston, J. (2006). Econometric Methods, third edition, McGraw Hill
- 4. Marno Verbeek, (2012): A guide to Modern Econometrics, 4/e, Wiley and Sons.
- 5. Nachane, D. M. (2006). Econometrics: Theoretical Foundations and Empirical Perspective, Oxford University Press
- 6. Ramanathan, R. (2002). Introductory Econometrics with applications, 5/e, Thomson Asia

Private Limited

DSE17STA32: Generalized Linear Models

Course Objectives: At the end of the course students will be able to:

- CO1: Understand and use the principles of statistical modelling.
- CO2: Understand the general theory of GLM and apply GLM for the analysis related to data sets in various domains
- CO3: Understand concept of Logistic regression and Poisson regression and its implementation in real life situation.
- CO4: Understand concept of Generalized linear mixed models.

Unit and Credit	DSE17STA32: Generalized Linear Models	No. of hours per unit / credits
Unit I	Generalized linear models: concept of generalized linear model, Link function, ML estimation, Quasi-likelihood estimation, large sample tests about parameters, goodness of fit, analysis of deviance. Residual analysis, types of residuals: raw, Pearson, deviance, Anscombe, quantile; residual plots. Variable selection: AIC and BIC.	15
Unit II	Logistic regression: logit, probit and cloglog model for dichotomous data with single and multiple explanatory variables, ML estimation, large sample tests about parameters. Hosmer-Lemeshow test, ROC curve. Multilevel logistic regression, Logistic regression for Nominal response: Baseline Category model and ordinal response: Proportional odds model.	15
Unit III	Poisson regression: ML and Quasi-likelihood estimation of parameters, testing significance of coefficients, goodness of fit, power family of link functions, over dispersion: Types, causes and remedies. Negative Binomial regression: NB-2 model.	15
Unit IV	Generalized linear mixed models (GLMM): Structure of the model, consequences of having random effects, estimation by maximum likelihood, marginal versus conditional models, estimation by generalized estimating equations and conditional likelihood, tests of hypothesis: LRT, asymptotic variance, Wald and score test.	15

- 1. Hosmer D.W. and Lemeshow S. (2000): Applied Logistic regression, 2nd ED. Wiley New York.
- 2. Agresti A. (1990) : Categorical Data Analysis. Wiley , New York.
- 3. R. Christensen (1997) Log-Linear Models and Logistic Regression, Springer. New York.
- 4. Hilbe, J. (2011): Negative Binomial regression, Cambridge University, Press, 2nd Edition.
- 5. McCulloch, C. E., & Searle, S. R. (2003). Generalized, linear, and mixed models, Wiley series in probability and statistics, New York. and Mathematical Statistics -3rd Edition, John Wiley & sons.

Practical	Practical Name
Number	
1	Simulation of Markov chain
2	Classification of t.p.m. and computation of n- step probability matrix.
3	Classification of states: Computations of absorption probabilities.
4	Stationary distribution and recurrence time.
5	Classification.
6	Cluster Analysis.
7	Artificial Neural Network.
8	Support Vector Machine.
9	Python Programming I (Arrays, String, List, Tuple, Set, Dictionary)
10	Python Programming II (Conditional statements, Loops, List
	comprehensions)
11	Python Programming III (File processing, Modules)
12	Python Programming IV (Data visualization, manipulation using python
	libraries)
13-16	At least 3-4 practicals on elective paper.

DSC17STA39: STATISTICS PRACTICAL -III

(Each practical should consist of problems to be solved using at least two of the following software: EXCEL/ R/python)

Semester IV

DSC17STA41: Time Series Analysis

Course Objectives: At the end of the course students will be able to:

- CO1: Remove trend and seasonality using different methods to convert the time series into stationary.
- CO2: Understand time series, auto-covariance, auto-correlation their properties, various smoothing techniques.
- CO3: Obtain Causality and inevitability, π -weights and ψ weights, ACVF, ACF, PACF.
- CO4: Understand estimation of ARIMA model, residual analysis and diagnostic checking, their forecasting.

Unit and Credit	DSC17STA41: Time Series Analysis	No. of hours per unit / credits
Unit I	 (a) Exploratory time series analysis, Exponential, Double exponential and Holt – Winter smoothing and forecasting. (b) Auto - Covariance, Auto-correlation functions and their properties and characterization (without proof), Partial auto covariance function, Auto – Covariance generating function. First and second order Stationary time series, white noise process, Linear Process, Sample Estimates of mean, Auto - Covariance, Auto-correlation and Partial auto covariance functions. 	15
Unit II	Wold representation of linear stationary processes, linear time series models: Autoregressive, Moving Average, Autoregressive Moving Average models. Causality and invertibility of ARMA processes, computation of π -weights and ψ - weights, computation of ACVF, ACF and PACF for AR(1), AR(2), MA(1), MA(2), ARMA(1,1) process and general procedure for ARMA(p,q) process. The need for differencing a time series, Autoregressive Integrated Moving Average models.	15
Unit III	(a) Estimation of ARMA models: Yule-Walker estimation for AR Processes, Maximum likelihood and least squares estimation for ARMA Processes, Residual analysis and diagnostic checking. Minimum mean squared error forecasting for ARMA and ARIMA models, updating forecasts. Introduction to SARIMA models. (b) Spectral Representation of the ACVF, Spectral density of an ARMA process, its computation for simple models.	15
Unit IV	(a) Introduction to ARCH and GARCH models. Properties and estimation under ARCH(1) and GARCH(1,1) model. (b) Vector time-series models: Covariance and Correlation Matrix functions, MA and AR representation of vector processes, Covariance matrix function of the vector AR(1) and MA(1) models.	15

- 1. W. S. Wei (2005) Time Series Analysis: Univariate and Multivariate Methods
- 2. Box, G.E.P and Jenkins G.M. (1970) Time Series Analysis, Forecasting & Control, Holden-Day.
- 3. Brockwell, P.J and Davis R.A. (1987) Time Series: Theory and Methods, Springer- 4. TsayR. S. Analysis of Financial Time Series, 3rd Ed. (Wil. Ser. in Prob. and Statistics)
- 5. Kendall, M.G. (1978) Time Series, CharlerGraffin
- 6. Chatfield, C. (2004) The Analysis of Time Series An Introduction, Sixth edition, Chapman and Hall.

DSC17STA42: DESIGN AND ANALYSIS OF EXPERIMENTS

Course Objectives: At the end of the course students will be able to:

- CO1: Recognize the basic concepts of design of experiments.
- CO2: Analyse different factorial and fractional experiments their interactions, graphical representation and confounding.
- CO3: Describe the concept of fractional factorial design.
- CO4: Understand the concept of response surface and methods of fitting it.

Unit and Credit	DSC17STA42: DESIGN AND ANALYSIS OF EXPERIMENTS	No. of hours per unit / credits
Unit I	Concept of design of experiments (DOE), applications of DOE; Basic principles of DOE; one-way ANOVA, two-way ANOVA with and without interaction, two-way ANOVA with r observations per cell, Contrasts, orthogonal contrasts, Scheffe's method for comparing contrasts; Comparing pairs of treatment means: controlling false discovery rate, Tukey's test, Fisher least significant difference method; Comparing treatment means with a control; General block design, balanced incomplete block design using fixed effect models and estimation of the model parameters.	15
Unit II	Concepts of factorial designs, main effects, and interaction effects; The two-factor factorial design and its analysis using fixed effect model; The general factorial design; Analysis of replicated and unreplicated 2^k full factorial designs; Blocking and confounding in a 2^k factorial design; Construction and analysis of 2^{k-p} fractional factorial designs and their alias structures; Design resolution, resolution III and resolution IV designs; fold over designs; saturated designs.	15
Unit III	The 3^k full factorial design and its analysis using fixed effect model; Confounding in 3^k factorial designs; Construction and analysis of 3^{k-p} fractional factorial designs and their alias structures; Factorials with mixed levels: factors at two and three levels, factors at two and four levels; Design optimality criteria.	15
Unit IV	Response surface methodology: the method of steepest ascent, analysis of the response surface using first and second order model, characterizing the response surface, ridge systems, multiple responses, designs for fitting response surfaces: simplex design, central composite design (CCD), spherical CCD, Box–Behnken design; Robust parameter design: crossed array designs and their analyses, combined array designs and the response model approach; The concepts of nested and split-plot designs.	15

1.Montgomery D.C. (2017): *Design and Analysis of Experiments*, 9th edition, John Wiley & Sons, Inc.

- 2. Phadke, M. S. (1989). Quality Engineering using Robust Design, Prentice-Hall.
- 3. Voss, D., Dean, A., and Dean, A. (1999). *Design and Analysis of Experiments*, Springer verlag Gmbh.
- 4. Wu, C. F., Hamada M. S. (2000). *Experiments: Planning, Analysis and Parameter Design Optimization, 2nd edition, John Wiley & Sons.*

DSE17STA41: Optimization Techniques

Course Objectives: At the end of the course students will be able to:

- CO1: Understand basics and formulation of linear programming problems and appreciate their limitations; solve linear programming problems using graphical method.
- CO2: Apply simplex method to solve real life problems.
- CO3: Solve artificial variable technique, duality theory, revised simplex method, sensitivity analysis.
- CO4: Understand the concept of Game theory and dynamic programming to solve their problems and understand their real-life applications

Unit and Credit	DSE17STA41: Optimization Techniques	No. of hours per unit / credits
Unit I	Convex Sets and Functions: Convex sets, supporting and separating hyperplanes, convex polyhedra and polytope, extreme points, convex functions. Linear programming problem (LPP): Definition and applications, theorems related to the development of simplex algorithm, theorems related to a basic feasible solution, reduction of a feasible solution to a basic feasible solution, improvement of a basic feasible solution, existence of unbounded solution, optimality conditions and other related theorems (statements only), Examples. Artificial variable technique: Two phase method, degeneracy.	15
Unit II	Concept of Duality, related theorems, complementary slackness property and development of dual simplex algorithm. Sensitivity Analysis: Changes in the cost vector, requirement vector and non-basic activity vector; addition of new variables and addition of new constraints.	15
Unit III	Integer Linear Programming Problem (ILPP): The concept of cutting plane, cutting plane method for all ILPP and mixed ILLP, Branch and Bound method. Quadratic programming: Kuhn-Tucker conditions, methods due to Beale,	15
Unit IV	Theory of games: two-person zero sum games, minimax and maximin principles, Saddle point, mixed strategies; rules of dominance, solution of 2 x 2 game by algebraic method, Graphical method, Reduction of the game problem as LPP. Dynamic Programming: The Recursion Equation Approach, Computational Procedure, Characteristics of Dynamic Programming, Solution of L.P.P. by Dynamic Programming.	15

- 1. Hadley G.(1969): Linear Programming, Addison Wesley
- 2. Taha H. A. (1971): Operation Research: An Introduction, Macmillan N.Y.
- 3. KantiSwaroop& Gupta M. M.(1985): Operations Research, Sultan Chand & Co. ltd.
- 4. P.Gupta&D.S.Hira(2010): Operation Research, Sultan Chand & Co. ltd.
- 5. J. K. Sharma. (2003): Operation Research: Theory and Applications. Macmillan.

DSE17STA42: Statistical Quality Control

Course Objectives: At the end of the course students will be able to:

CO1: Understand concepts of control charts in quality improvement.

CO2: Construct modified control charts to monitor the process.

CO3: Analyse process capability using control charts.

CO4: Evaluate the quality of products using various acceptance sampling plans.

Unit and Credit	DSE17STA42: Statistical Quality Control	No. of hours per unit / credits
Unit I	Quality Improvement Tools: affinity diagram, interrelationship digraph, tree diagram, prioritization matrix, matrix diagram, process decision program chart, activity network diagram, stem-and-leaf display, dot diagrams, boxplot, and normal probability plot, Engineering Process Control. Shewhart Control charts: basic statistical principles and assumptions, phase I and phase II applications, benefits from the use of control charts, concept of rational subgroups, performance measures of a control chart, S, S2, and D charts, σ -control limits and probability control limits, over dispersion. Modifications to control chart procedures: warning limits, sensitizing rules, adaptive design parameters, integration of two charts. Concept of economic design of a control chart.	15
Unit II	Alternatives to Shewhart control charts: CUSUM and EWMA charts, Shewhart–EWMA Chart. Multivariate Control Charts: multivariate chart versus individual charts, Hotelling's T2 control chart, multivariate CUSUM Charts, multivariate EWMA charts, Regression adjustment. Other Control Charts: SPRT chart, GLR Chart, charts for autocorrelated data, nonparametric control charts, Bayesian control charts. The change point model for process monitoring.	15
Unit III	Process capability Analysis: process capability, process capability indices (Cp, Cpk, Cpm, Cpmk), point and interval estimation of Cp and Cpk, Nonparametric Capability Indices: robust capability indices, capability indices based on fitted distributions, data transformation, capability indices computed using resampling methods. Multivariate Process Capability Indices. Six Sigma Methodology: components of a Six Sigma methodology, the DIMAC process, Six Sigma applications, Six Sigma concept for customer satisfaction, Six Sigma training, Lean Six Sigma.	15

Unit IV	Acceptance sampling plans for attributes: single sampling plan, double and multiple sampling plans, sequential	15
	sampling. Performance measures of sampling plans.	
	Acceptance sampling plans for variables: Advantages and	
	Disadvantages of Variables Sampling, Sampling inspection	
	plans by variables for one or two sided specifications,	
	Sequential Sampling by Variables, Rectifying inspection of	
	lots, the Deming inspection criterion, Continuous sampling	
	plans, skip-lot sampling plans	

- 1. Guenther, W. C. (1977). Sampling Inspection in statistical quality control. Macmillan.
- 2. Kenett, R. S. and Zacks, S. (2014). Modern Industrial Statistics with applications in R, MINITAB and JMP. John Wiley & Sons.
- 3. Montgomery, D. C. (2010). Statistical Quality Control: A Modern Introduction, 6th Edition. Wiley India Pvt Ltd.
- 4. Ryan, T. P. (2011). Statistical Methods for Quality Improvement. John Wiley & Sons.

DSE17STA43: Survival Analysis

Course Objectives: At the end of the course students will be able to:

CO1: Collect the life time data using different methods of censoring.

CO2: Apply the Cox regression model.

CO3: Understand concept of competing risk analysis and how to apply in real life situations.

CO4: Use regression methods for life time data.

Unit and Credit	DSE17STA43: Survival Analysis	No. of hours per unit / credits
Unit I	Estimating the survivor function: Various types of censoring: right, left, interval Censoring; random censoring; Survivor, hazard and cumulative hazard functions. Estimating the survivor function: Life-table estimate, Kaplan-Meier estimate, Nelson-Aalen estimate; Standard error of the estimated survivor function; Confidence intervals for values of the survivor function; Estimating the hazard function; Estimating the median and percentiles of survival times; Confidence intervals for the median and percentiles.	15
Unit II	The Cox regression model: A regression model for the comparison of two groups; The general proportional hazards model, Models corresponding to the linear component of the model: including a variate, a factor, an interaction, a mixed term. Fitting the Cox regression model in R, Likelihood function for the model, Treatment of ties, Confidence intervals and hypothesis tests for coefficients and for hazard ratios using R; Measures of explained variation, Measures of predictive ability, Model checking using various types of residuals: Cox-Snell; Modified Cox-Snell; Martingale; Deviance; Schoenfeld; Score residuals, plots based on these residuals and their interpretation.	15
Unit III	Competing risks: Summarizing competing risks data; Kaplan-Meier estimate of survivor function; its properties without proof, Hazard and cumulative incidence functions; Cause specific hazard function; Cause-specific cumulative incidence function; Likelihood functions for competing risks models; Parametric models for cumulative incidence functions.	15
Unit IV	 a) Comparison of two groups of survival data: The log rank test; The Wilcoxon test; Comparison of three or more groups of survival data. b) Introduction to frailty Models: Random effects, Individual frailty, Shared frailty; Frailty distributions: The gamma frailty distribution; Lognormal frailty effects; Testing for the presence of frailty; The shared frailty model; Fitting the shared frailty model; Comparing shared frailty models. 	15

- 1. Collet, D. (2015). Modeling Survival Data in Medical Research. London: Chapman and Hall.
- 2. Hosmer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time toEvent Data. New York: Wiley.
- 3. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and
- 4. Analysis of Cohort Studies. Lyon: IARC.
- 5. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New
- 6. York: Springer.
- 7. Kalbfleish, JD. and Prentice, RL. (2002). The Statistical Analysis of Failure Time Data. New York:Wiley.

Practical Number	Practical Name	
1	Auto covariance and Autocorrelation.	
2	Causal and Invertible	
3	Smoothing the series	
4	Forecasting	
5	Analysis of CRD, RBD, LSD	
6	Analysis of BIBD	
7	Analysis of full, confounded and fractional 2k factorial designs	
8	Analysis of full, confounded and fractional 3k factorial designs	
9-13	At least 3-4 practicals on elective paper.	

DSC17STA49: STATISTICS PRACTICAL -IV

(Each practical should consist of problems to be solved using at least two of the following software: EXCEL/ R/python)

DEPARTMENT OF STATI VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

1