"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe



# VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

# DEPARTMENT OF STATISTICS Three/Four- Years UG Programme Department/Subject Specific Core or Major (DSC)

# **NEP- Phase-II**

# Curriculum, Teaching and Evaluation Structure

### (as per NEP-2020 Guidelines)

# for

# **B.Sc.-I Statistics**

# Semester-I & II

(Implemented from academic year 2024-25 onwards)

### VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS) Teaching & Evaluation Scheme

(2024-25 onwards for NEP-Phase-II)

**Three/Four- Years UG Programme** 

### Department/Subject Specific Core or Major (DSC) as per

#### NEP-2020

#### Teaching Sr. **Examination Scheme and** Scheme No. Marks Course Course **Course code Course Name** Hours/week Abbr. Credits PR/PR Mark SSE CIE ΤН PR 0 s Semester-I 1 DSC-I 2DSC03STA11 Descriptive Statistics I 2 \_ 40 10 \_ 50 2 Elementary Probability 2 DSC-II 2DSC03STA12 Theory 2 50 2 40 10 \_ \_ DSC STA-3 2DSC03STA19 DSC Statistics Practical I 4 2 \_ \_ 25 25 \_ PR-I OEC MTS-4 20EC03MTS12 **Basic Statistics I** 4 25 25 2 \_ PR-I 50 Sem I Total 4 8 80 20 150 8 Semester-II DSC-III 2DSC03STA21 **Descriptive Statistics II** 1 2 40 10 50 2 **Discrete Probability** 2 DSC-IV 2DSC03STA22 2 40 10 50 2 -\_ Distributions DSC STA-3 2DSC03STA29 **DSC Statistics Practical II** 4 2 \_ 25 25 \_ \_ PR-II OEC MTS-4 20EC03MTS22 **Basic Statistics II** 2 4 25 25 \_ PR-II

4

8

80

20

**50** 

150

8

Sem II Total

#### UG Certificate (B.Sc.- I Semester- I & II)

#### B. Sc. Part – I Semester -I STATISTICS DSC-I: 2DSC03STA11: Descriptive Statistics I Theory: 30 hrs. Marks-50 (Credits: 02)

**Course Outcomes -** At the end of this course students will be able to:

CO1. Know scope of Statistics and sampling methods.

CO2. Compute descriptive statistics.

CO3. Compute moments, skewness, kurtosis and its interpretation.

CO4. Apply an appropriate measure in given situations/data.

| Unit | Contents                                                                 | Hours    |
|------|--------------------------------------------------------------------------|----------|
|      |                                                                          | Allotted |
| 1    | Introduction to Statistics & Measures of Central Tendency                |          |
|      | 1.1 : Definition and scope of Statistics, raw data, Meaning of primary   | 15       |
|      | and secondary data. Qualitative data (Attributes): nominal and           |          |
|      | ordinal scale. Quantitative data (Variables): Interval and ratio         |          |
|      | scale, discrete and continuous variables.                                |          |
|      | 1.2 : Concept of Central tendency, Statistical average, Requirements of  |          |
|      | good statistical average.                                                |          |
|      | 1.3 : Arithmetic Mean (A.M): Definition, Properties:                     |          |
|      | a. Effect of change of origin and scale,                                 |          |
|      | b. Sum of deviation of observations from A.M is zero.                    |          |
|      | c. Sum of squares of deviation of observations from A.M is               |          |
|      | minimum.                                                                 |          |
|      | d. Combined mean of k series (prove for two series and                   |          |
|      | generalize for k series) Weighted A.M.                                   |          |
|      | 1.4 : Geometric Mean (G.M): Definition, Properties: i) G. M. of pooled   |          |
|      | data (for two groups), ii) G. M. of ratio of two series, is the ratio of |          |
|      | their G. M's.                                                            |          |
|      | 1.5 : Harmonic Mean (H.M.): Definition, Relation: $A.M \ge G.M \ge$      |          |
|      | H.M (proof for $n = 2$ positive observations).                           |          |
|      | 1.6 : Median: Definition, Derivation of formula for grouped frequency    |          |
|      | distribution.                                                            |          |
|      | 1.7 : Mode: Definition, Derivation of formula for grouped frequency      |          |
|      | distribution. Empirical relation between Mean, Median and Mode.          |          |
|      | Graphical method of determination of Median and Mode.                    |          |
|      | 1.8 : Partition values Quartiles, Deciles and Percentiles, Box Plot.     |          |
|      | 1.9 : Comparison between averages in accordance with requirements        |          |
|      | of good average.                                                         |          |
|      | 1.10: Situations where one kind of average is preferable to others.      |          |
|      |                                                                          |          |

| 2 | Measures of Dispersion, Moments, Skewness and Kurtosis                             |    |
|---|------------------------------------------------------------------------------------|----|
|   | 2.1 : Concept of dispersion, Absolute and Relative measures of                     | 15 |
|   | dispersion, Requirements of a good measure of dispersion.                          |    |
|   | 2.2: Range: Definition, Coefficient of range.                                      |    |
|   | 2.3: Quartile Deviation (Semi-interquartile range): Definition,                    |    |
|   | Coefficient of Q.D.                                                                |    |
|   | 2.4: Mean Deviation: Definition, Coefficient of M.D., Minimal                      |    |
|   | property of M.D.                                                                   |    |
|   | 2.5: <b>Mean Square Deviation</b> (M.S.D.): Definition, Minimal property of M.S.D. |    |
|   | 2.6: Variance and Standard Deviation: Definition, Effect of change                 |    |
|   | of origin and scale, combined variance (proof for two groups).                     |    |
|   | 2.7 : Coefficient of Variation: Definition and use.                                |    |
|   | 2.8 : Comparison of S.D. with other measures.                                      |    |
|   | 2.9 : Moments: Raw moments $(\mu_r)$ and Central moments $(\mu_r)$                 |    |
|   | for ungrouped and grouped data.                                                    |    |
|   | 2.10: Effect of change of origin and scale on central moments,                     |    |
|   | relation between central moments and raw moments (up to 4 <sup>th</sup> order).    |    |
|   | 2.11 : Sheppard's corrections.                                                     |    |
|   | 2.12: Skewness: Concept of skewness of a frequency distribution,                   |    |
|   | Types of skewness.                                                                 |    |
|   | 2.13: Bowley's coefficient of skewness, Karl Pearson's coefficient                 |    |
|   | of skewness, Measure of skewness based on moments.                                 |    |
|   | 2.14: Kurtosis: Concept of kurtosis of a frequency distribution,                   |    |
|   | Types of kurtosis.                                                                 |    |
|   | 2.15: Measure of kurtosis based on moments.                                        |    |

#### **References:**

- 1. Bhat B. R., Srivenkatramana T. and Madhava Rao K. S. (1996): Statistics: A Beginner's Text, Vol. 1, New Age International (P) Ltd.
- 2. Croxton F. E., Cowden D.J. and Kelin S. (1973): Applied General Statistics, Prentice Hall of India.
- 3. Goon A.M., Gupta M.K., and Dasgupta B.: Fundamentals of Statistics Vol. I and II, World Press, Calcutta.
- 4. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.
- 5. Snedecor G.W. and Cochran W. G. (1967): Statistical Methods, Lowa State University Press.
- 6. Waiker and Lev.: Elementary Statistical Methods.
- 7. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics- Sultan& Chand

#### B. Sc. Part – I Semester -I STATISTICS DSC-II: 2DSC03STA12: Elementary Probability Theory Theory: 30 hrs. Marks-50 (Credits: 02)

- CO1. Distinguish between Deterministic and Non-deterministic experiments.
- CO2. Understand the basic concepts of probability, conditional probability and independence of events.
- CO3. Learn theorems on probabilities and compute probabilities.
- CO4: Understand the concept of discrete random variable, probability distributions and mathematical expectation.

| Unit | Contents                                                                                                                                                         | Hours<br>Allotted |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1    | Probability                                                                                                                                                      |                   |
|      | 1.1 : Concepts of experiments and random experiments.                                                                                                            | 15                |
|      | 1.2: Definitions: Sample space, Discrete sample space (finite and                                                                                                |                   |
|      | countably infinite).                                                                                                                                             |                   |
|      | 1.3: Event, Types of events: Elementary event, Compound event,                                                                                                   |                   |
|      | Impossible events, Certain event, favorable event                                                                                                                |                   |
|      | Algebra of events (Union, Intersection and Complement).                                                                                                          |                   |
|      | 1.4: Definitions of Mutually exclusive events, Exhaustive events,                                                                                                |                   |
|      | 1.5: Power set $ P(\Omega) $ (sample space consisting at most 3 sample points).                                                                                  |                   |
|      | 1.6: Symbolic representation of given events and description of                                                                                                  |                   |
|      | events in symbolic form.                                                                                                                                         |                   |
|      | 1.7: Illustrative examples.                                                                                                                                      |                   |
|      | 1.8: Equally likely outcomes (events), apriori (classical) definition of                                                                                         |                   |
|      | probability of an event. Equiprobable sample space, simple                                                                                                       |                   |
|      | examples of computation of probability of the events based on                                                                                                    |                   |
|      | Permutations and Combinations.                                                                                                                                   |                   |
|      | 1.9: Axiomatic definition of probability with reference to a finite and                                                                                          |                   |
|      | 1 10 · Proof of the results:                                                                                                                                     |                   |
|      | i) $P(\Phi) = 0$ ii) $P(\Lambda^c) - 1 P(\Lambda)$                                                                                                               |                   |
|      | i) $\mathbf{P}(\mathbf{A} \perp \mathbf{B}) = \mathbf{P}(\mathbf{A}) \perp \mathbf{P}(\mathbf{B}) = \mathbf{P}(\mathbf{A} \cap \mathbf{B})$ (with proof) and     |                   |
|      | $(A \cup B) = \Gamma(A) + \Gamma(B) = \Gamma(A \cap B)$ (with proof) and<br>its generalization (Statement only)                                                  |                   |
|      | iii) If $\Lambda \subset \mathbf{R} \cdot \mathbf{D}(\Lambda) \leq \mathbf{D}(\mathbf{R}) \cdot \mathbf{v}(\Lambda \subset \mathbf{R}) \leq \mathbf{D}(\Lambda)$ |                   |
|      | (A) = (A) = (A) = (A) = (A) = (A) $(A) = (A) = (A) = (A)$                                                                                                        |                   |
|      | 1 11: Definition of probability in terms of odd ratio                                                                                                            |                   |
|      | 1 12: Illustrative examples                                                                                                                                      |                   |
|      | 1.13: Definition of conditional probability of an event.                                                                                                         |                   |
|      | 1.14: Multiplication theorem for two events. Examples on                                                                                                         |                   |
|      | conditional probability.                                                                                                                                         |                   |
|      | 1.15: Partition of sample space.                                                                                                                                 |                   |
|      | 1.16: Idea of Posteriori probability, Statement and proof of Baye's                                                                                              |                   |
|      | theorem, examples on Baye's theorem.                                                                                                                             |                   |

| 2 | Independence of Event & Mathematical Expectation of discrete              |    |
|---|---------------------------------------------------------------------------|----|
|   | random variable (on finite sample space)                                  | 15 |
|   | 2.1: Concept of Independence of two events.                               |    |
|   | 2.2: Proof of the results: If A and B are independent then,               |    |
|   | i) A and $B^c$ , ii) $A^c$ and B , iii) $A^c$ and $B^c$ are independent.  |    |
|   | 2.3: Pairwise and Mutual Independence for three events.                   |    |
|   | 2.4: Elementary examples.                                                 |    |
|   | 2.5: Definition of discrete random variable, Probability mass             |    |
|   | function (p.m.f.) and cumulative distribution function (c.d.f.)           |    |
|   | of a discrete random variable, Properties of c.d.f. (statements           |    |
|   | only), Probability distribution of function of random variable,           |    |
|   | Median and Mode of a univariate discrete probability                      |    |
|   | distribution.                                                             |    |
|   | 2.6: Mathematical Expectation: Definition of expectation of a             |    |
|   | random variable, expectation of a function of a random                    |    |
|   | variable. Results on expectation,                                         |    |
|   | i) $E(c) = c$ , where c is a constant,                                    |    |
|   | ii) E $(aX + b) = a E (X) + b$ , where a and b are constants,             |    |
|   | 2.7: Definitions of mean, variance of univariate distributions. Effect of |    |
|   | change of origin and scale on mean and variance. Definition of            |    |
|   | raw, central moments. Pearson's coefficient of skewness, kurtosis,        |    |
|   | Definition of probability generating function (p.g.f.) of a random        |    |
|   | variable. Effect of change of origin and scale on p.g.f. Definition       |    |
|   | of mean and variance by using p.g.f.                                      |    |
|   | 2.8: Examples.                                                            |    |

#### **References:**

- 1. Bhat B. R., Srivenkatramana T and Madhava Rao K. S. (1997): Statistics: a Beginner's Text, Vol. II, New Age International (P) Ltd.
- 2. Edward P. J., Ford J. S. and Lin (1974): Probability for Statistical Decision-Making, Prentice Hall.
- 3. Goon A. M., Gupta M. K., Das Gupta B. (1999): Fundamentals of Statistics, Vol.II, World Press, Calcutta.
- 4. Mood A. m., Graybill F. A. and Boes D. C. (1974): Introduction to the Theory of Statistics, McGraw Hill.
- 5. Hogg R. V. and Crag R. G.: Introduction to Mathematical Statistics Ed.4.
- 6. Hoel P. G. (1971): Introduction to Mathematical Statistics, Asia Publishing House.
- 7. Meyer P.L.(1970): Introductory Probability and Statistical Applications, Addision Wesley.
- Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John Wiley & Sons (Asia)
- 9. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics- Sultan & Chand
- 10. Mukhopadhyay P. (2006): Probability. Books and Allied (P) Ltd
- Note: 1. In theory examination, the weightage to the numerical problems should not exceed 40%.2. Students can use scientific calculators in theory examination.

#### DSC STA-PR-I: 2DSC03STA19

### DSC Statistics Practical I (Credits 02)

**Course Outcomes -** At the end of this practical paper students will be able to:

- CO1. Use various graphical and diagrammatic techniques and Interpret.
- CO2. Compute descriptive statistics.
- CO3. Computation of Moments, Skewness, Kurtosis & its interpretation.
- CO4. Computation of various probabilities.

| Sr. No. | Title of the Experiment                             |
|---------|-----------------------------------------------------|
| 1       | Graphical representation of frequency distribution. |
| 2       | Measures of Central Tendency I (Ungrouped data)     |
| 3       | Measures of Central Tendency II (Grouped data)      |
| 4       | Measures of Dispersion I (Ungrouped data)           |
| 5       | Measures of Dispersion II (Grouped data)            |
| 6       | Moments, Skewness and Kurtosis I (Ungrouped data)   |
| 7       | Moments, Skewness and Kurtosis II (Grouped data)    |
| 8       | Probability                                         |
| 9       | Conditional Probability & Baye's Theorem            |
| 10      | Independence of events                              |
| 11      | Univariate Probability Distributions I              |
| 12      | Univariate Probability Distributions II             |

#### B. Sc. Part – I Semester -II STATISTICS DSC-III: 2DSC03STA21: Descriptive Statistics II Theory: 30 hrs. Marks-50 (Credits: 02)

- CO1. To compute correlation coefficient and its interpretation.
- CO2. To compute regression coefficients and regression lines.
- CO3. Analyze data pertaining to attributes and interpret the results.
- CO4. Understand the need of vital statistics and concepts of mortality and fertility.

| Unit | Contents                                                                                                                        | Hours    |
|------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| 1    |                                                                                                                                 | Allotted |
| 1    | Analysis of Bivariate Data                                                                                                      | 15       |
|      | 1.1: <b>Correlation:</b> Bivariate Random variable (X, Y), Bivariate data,                                                      | 15       |
|      | Formation of bivariate frequency distribution.                                                                                  |          |
|      | 1.2: Definition and properties of Covariance of (X, Y). (Effect of change of                                                    |          |
|      | origin and scale on covariance)                                                                                                 |          |
|      | 1.3: Concept of correlation between two variables, Types of correlation.                                                        |          |
|      | 1.4: Scatter diagram, its utility.                                                                                              |          |
|      | 1.5: Karl Pearson's coefficient of correlation (r): Definition, Computation                                                     |          |
|      | for ungrouped and grouped data.                                                                                                 |          |
|      | <b>Properties:</b> 1) $-1 \le r \le 1$ , 11) Effect of change of origin and scale. 111)<br>Interpretation when $r = -1$ , 0 & 1 |          |
|      | 1 6: Spearman's rank correlation coefficient: Definition Computation (for                                                       |          |
|      | with and without ties). Derivation of the formula for without ties and                                                          |          |
|      | modification of the formula for with ties                                                                                       |          |
|      | 1.7: <b>Regression</b> : Concept of regression. Lines of regression. Fitting of                                                 |          |
|      | lines of regression by the least square method.                                                                                 |          |
|      | 1.8: Regression coefficients ( $b_{xy}$ , $b_{yx}$ ) and their geometric                                                        |          |
|      | interpretations, Properties: i) $b_{xy} \times b_{yx} = r^2$ , ii) $b_{xy} \times b_{yx} \le 1$ ,                               |          |
|      | iii) $(b_{xy}+b_{yx})/2 \ge r$ , iv) Effect of change of origin and scale on                                                    |          |
|      | regression coefficients, v) the point of intersection of two                                                                    |          |
|      | regression lines.                                                                                                               |          |
|      | 1.9: Derivation of acute angle between the two lines of regression.                                                             |          |
|      | 1.10: Coefficient of determination.                                                                                             |          |
|      | 1.11: Examples.                                                                                                                 |          |
| 2    | Theory of Attributes & Demography:                                                                                              |          |
|      | 2.1: Attributes: Notation, dichotomy, class frequency, order of class,                                                          |          |
|      | positive and negative class frequency, ultimate class frequency,                                                                |          |
|      | fundamental set of class frequency, relationships among different                                                               |          |
|      | class frequencies (up to three attributes).                                                                                     | 15       |
|      | 2.2: Concept of Consistency, conditions of consistency (up to                                                                   |          |
|      | three attributes).                                                                                                              |          |
|      | 2.3: Concept of Independence and Association of two attributes.                                                                 |          |
|      | 2.4: Yule's coefficient of association (Q): Definition & interpretation.                                                        |          |
|      | 2.5: Coefficient of colligation (Y): Definition, interpretation.                                                                |          |

| 2.6: Relation between Q and Y, $Q = 2Y/(1+Y^2)$ , $ Q  \ge  Y $ .     |  |
|-----------------------------------------------------------------------|--|
| 2.7: Illustrative examples.                                           |  |
| 2.8: <b>Demography:</b> Introduction and need of vital statistics     |  |
| 2.9: Mortality rates: Crude death rate (CDR), Specific Death Rate     |  |
| (SDR), Standardized Death Rate (STDR).                                |  |
| 2.10: Fertility Rates: Crude Birth Rate (CBR), Age Specific Fertility |  |
| Rate (ASFR), General Fertility Rate (GFR), Total Fertility Rate       |  |
| (TFR).                                                                |  |
| 2.11: Reproduction Rate: Gross Reproduction rate (GRR),               |  |
| Net Reproduction Rate (NRR).                                          |  |
| 2.12: Lifetable, Notations and terminology, Expectation of life,      |  |
| Stationary population, Stable population, Central Mortality           |  |
| Rate, Force of Mortality, Assumptions, Description and                |  |
| construction of life table, Uses of life table.                       |  |

#### **References:**

- 1. Bhat B. R., Srivenkatramana T. and Madhava Rao K. S. (1996): Statistics: A Beginner's Text, Vol. 1, New Age International (P) Ltd.
- 2. Croxton F. E., Cowden D.J. and Kelin S. (1973): Applied General Statistics, Prentice Hall of India.
- 3. Goon A.M., Gupta M.K., and Dasgupta B.: Fundamentals of Statistics Vol. I and II, World Press, Calcutta.
- 4. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.
- 5. Snedecor G.W. and Cochran W. G. (1967): Statistical Methods, Iowa State University Press.
- 6. Waiker and Lev.: Elementary Statistical Methods.
- 7. Kapur, J. N and Gupta, H. C,: Fundamentals of Mathematical Statistics. S. Chand and sons, New Delhi.
- 8. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics- Sultan & Chand

### B. Sc. Part – I Semester -II STATISTICS DSC-IV: 2DSC03STA22: Discrete Probability Distributions Theory: 30 hrs. Marks-50 (Credits: 02)

- CO1. Apply some univariate standard discrete probability distributions to different situations.
- CO2. Obtain mathematical expectation of different distributions.
- CO3. To learn relation between different discrete distributions.
- CO4. Concept of bivariate random variable, probability distributions.

| Unit | Contents                                                                                                                                             | Hours    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                                                                                                                                                      | Allotted |
| 1    | Standard Discrete Probability Distributions:                                                                                                         |          |
|      | 1.1 : Idea of one point, two-point distributions and its mean and variance.                                                                          | 15       |
|      | 12 : Discrete Uniform Distribution: p.m.f., mean and variance.                                                                                       |          |
|      | 13 : <b>Bernoulli Distribution:</b> p.m.f., mean, variance, distribution<br>of sum of independent and identically distributed Bernoulli<br>variables |          |
|      | 1.4: Binomial Distribution: Binomial random variable, p.m.f.                                                                                         |          |
|      | with parameters (n, p), Recurrence relation for successive                                                                                           |          |
|      | probabilities, mean, variance, mode, skewness, p.g.f. and                                                                                            |          |
|      | additive property of binomial variates. Examples.                                                                                                    |          |
|      | 1.5: Hyper geometric Distribution: p.m.f. with parameters                                                                                            |          |
|      | (N, M, n), Computation of probability of different events,                                                                                           |          |
|      | situations where this distribution is applicable, Recurrence                                                                                         |          |
|      | relation for successive probabilities, mean and variance of                                                                                          |          |
|      | distribution assuming $n \le N - M \le M$ , approximation of                                                                                         |          |
|      | Hypergeometric to Binomial. Examples.                                                                                                                |          |
|      | 1.6 Poisson Distribution: Definition of Poisson distribution with                                                                                    |          |
|      | parameter $\lambda$ . Mean, variance, probability generating function                                                                                |          |
|      | (p.g.f.). Recurrence relation for successive probabilities,                                                                                          |          |
|      | Additive property of Poisson distribution. Poisson distribution                                                                                      |          |
|      | as limiting case of Binomial distribution, examples.                                                                                                 |          |

| 2 | Bivariate Probability Distribution (Defined on finite sample                                             |    |
|---|----------------------------------------------------------------------------------------------------------|----|
|   | space) & Mathematical Expectation (Bivariate random variable):                                           | 15 |
|   |                                                                                                          |    |
|   | 2.1: Definition of bivariate discrete random variable (X, Y) on finite sample space.                     |    |
|   | 2.2: Joint p.m.f., and c.d.f., Properties of c.d.f. (without proof).                                     |    |
|   | 2.3: Computation of probabilities of events in bivariate probability distribution.                       |    |
|   | 2.4: Concepts of marginal and conditional probability distributions, independence of two discrete r.v.s. |    |
|   | 2.5: Examples and problems.                                                                              |    |
|   | 2.6: Definition of expectation of functions of r.v. in bivariate                                         |    |
|   | distribution.                                                                                            |    |
|   | 2.7: Theorems on expectations: (i) $E(X+Y) = E(X) + E(Y)$                                                |    |
|   | (ii) $E(XY) = E(X) \cdot E(Y)$ when X and Y are independent                                              |    |
|   | 2.8: Expectation and variance of linear combination of two discrete                                      |    |
|   | r.v.s.                                                                                                   |    |
|   | 2.9: Definition of conditional mean, conditional variance, covariance                                    |    |
|   | and correlation coefficient, Cov (aX+bY, cX+dY).                                                         |    |
|   | 2.10: Distinction between uncorrelated and independent variables.                                        |    |
|   | 2.11: Joint p.g.f, proof of the p.g.f. of sum of two independent r.v.as                                  |    |
|   | the product of their p.g.f.                                                                              |    |
|   | 2.12: Examples and problems.                                                                             |    |
|   |                                                                                                          |    |

#### **Books Recommended:**

- 1. Bhat B. R., Srivenkatramana T and Madhava Rao K. S. (1997): Statistics: a Beginner's Text, Vol. II, New Age International (P) Ltd.
- 2. Edward P. J., Ford J. S. and Lin (1974): Probability for Statistical Decision-Making, Prentice Hall.
- 3. Goon A. M., Gupta M. K., Das Gupta B. (1999): Fundamentals of Statistics, Vol.II, World Press, Calcutta.
- 4. Mood A. m., Graybill F. A. and Boes D. C. (1974): Introduction to the Theory of Statistics, McGraw Hill.
- 5. Hogg R. V. and Crag R. G.: Introduction to Mathematical Statistics Ed.4.
- 6. Hoel P. G. (1971): Introduction to Mathematical Statistics, Asia Publishing House.
- 7. Meyer P. L. (1970): Introductory Probability and Statistical Applications, Addision Wesley.
- Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John wiley & Sons (Asia)
- Note: 1. In theory examination, the weightage to the numerical problems should not exceed 40%.2. Students can use scientific calculators in theory examination.

### DSC-STA-PR-II: 2DSC03STA29 DSC Statistics Practical II (Credits 02)

Course Outcomes - At the end of this practical paper students will be able to:

CO1. Compute correlation coefficient, regression coefficients.

- CO2. Analyze data pertaining to attributes and interpret the results.
- CO3. Apply various discrete distributions.
- CO4. Compute mortality and fertility rates.

| Sr. No. | Title of the Experiment                                  |
|---------|----------------------------------------------------------|
| 1.      | Correlation I (Karl Pearson's correlation coefficient)   |
| 2.      | Correlation II (Spearman's Rank correlation coefficient) |
| 3.      | Regression I(Ungrouped data)                             |
| 4.      | Regression II (Grouped data)                             |
| 5.      | Attribute I (Missing frequencies, Consistency)           |
| 6.      | Attribute II (Association and Independence)              |
| 7.      | Demography I (Mortality Rate)                            |
| 8.      | Demography II (Fertility Rate)                           |
| 9.      | Applications of Discrete Uniform & Binomial distribution |
| 10      | Applications of Hypergeometric & Poisson distribution    |
| 11.     | Bivariate Discrete distribution I                        |
| 12.     | Bivariate Discrete distribution II                       |

#### Note:

- i. Calculations using statistical formulae should be done by scientific calculator and verify by using MS-EXCEL.
- ii. Computer printouts should be attached to the journal if necessary.
- iii. Student must produce the laboratory journal along with the completion certificate signed by Head of Department, at the time of practical examination.

#### OEC MTS-PR-I: 2OEC03MTS12 Basic Statistics I PRACTICAL: 60 hrs. Marks-25 (Credits: 02)

Course Outcomes - At the end of this course students will be able to:

CO1.Prepare instruments for the data collection.

CO2.Learn basic concepts of sample survey & different methods of sampling.

CO3.Visualize data diagrammatically.

CO4. Visualize data graphically.

| Unit No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Allocated       |
| 1        | <ul> <li>Data Visualization &amp; Presentation of Data</li> <li>1.1: Introduction –Data (qualitative and quantitative data)</li> <li>1.2: Types of Characteristics: different scales of measurement<br/>Attributes and Variables, Collection and Organization of Data<br/>(Primary data, secondary data, Time series data, Cross-sectional<br/>data, Failure data).</li> <li>1.3: Basic Terms: Class interval, class frequency, class mark, class<br/>width, Classification, Methods of Classification, Tabulation,</li> </ul>                                                                                                                                        | Allocated<br>15 |
|          | <ul> <li>Frequency Distribution, Discrete and continuous frequency distribution, Cumulative Frequencies, Relative frequency.</li> <li>1.4: Diagrammatic Representation of Statistical Data –Bar diagram, subdivided bar diagram, Multiple bar diagram, Box plot, Pie chart, Scatter diagram.</li> <li>1.5: Graphical Representation of Statistical Data-Histogram, Ogive curves, Frequency polygon and frequency curves.</li> <li>2.1: Population, Sample, Sampling unit, Sampling frame, Sampling method, Census method.</li> <li>2.2: Advantages and disadvantages of sampling methods</li> <li>Probability Sampling: SRS, stratified random sampling,</li> </ul>   |                 |
| 2        | <ul> <li>Measures of Central Tendency <ol> <li>I.1: Introduction to statistics: Meaning &amp; scope of statistics</li> <li>Types of Data: Raw data, Data, Qualitative &amp; Quantitative data, Primary data and Secondary data, Discrete and Continuous</li> </ol> </li> <li>data. Measures of Central Tendency <ol> <li>Concept of Central Tendency.</li> <li>Arithmetic Mean: Definition, Combined mean.</li> </ol> </li> <li>1.5: Positional Averages: Median and Mode, Determination of m o d e and median by graph, Partition values (Quartiles and Deciles).</li> <li>Empirical relation between Mean, Median and Mode.</li> <li>Numerical examples.</li> </ul> | 15              |

#### **Reference Books:**

- 1. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics- Sultan & Chand
- 2. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.
   3. W. G. Cochran- Sampling Techniques Wiley Publication third edition.

#### **List of Practicals:**

| Sr. No. | Title of Experiment                                                        |
|---------|----------------------------------------------------------------------------|
| 1       | Formation of Frequency distribution                                        |
| 2       | Diagrammatic representation I (bar diagram, multiple, subdivided Bar)      |
| 3       | Diagrammatic representation II (pie diagram, scatter diagram, box plot)    |
| 4       | Graphical representation I (Histogram, frequency polygon, frequency curve) |
| 5       | Graphical representation I (less than and greater than ogive curves )      |
| 6       | Sampling (SRS and Stratified sampling)                                     |
| 7       | Measures of central tendency: I                                            |
| 8       | Measures of central tendency: II                                           |
| 9       | Diagrammatic & Graphical representation using MS- Excel                    |
| 10      | Measures of central tendency using MS- Excel                               |

### B. Sc. Part – I Semester -I STATISTICS OEC MTS-PR-II: 2OEC03MTS22: Basic Statistics II Marks-50 (Credits: 02) (60 hrs.)

- CO1. Learn basic concepts in statistics.
- CO2. Compute descriptive statistics.
- CO3. Understand the concept of bivariate data.
- CO4. Analyze data by using correlation and regression.

| Unit | Content                                                           | Hours     |
|------|-------------------------------------------------------------------|-----------|
| No.  |                                                                   | Allocated |
| 1    | Measures of Dispersion:                                           | 15        |
|      | 1.8: Concept of Dispersion                                        |           |
|      | 1.9: Absolute and Relative measures of dispersion.                |           |
|      | 1.10: Range- Definition, Coefficient of Range.                    |           |
|      | 1.11: Quartile Deviation (Q.D.) Definition, Coefficient of        |           |
|      | Q.D.                                                              |           |
|      | 1.12: Mean Deviation (M.D.): Definition of M.D. about             |           |
|      | Mean, Coefficient of M.D. about mean.                             |           |
|      | 1.13: Standard Deviation (S.D.) and Variance: Definitions,        |           |
|      | Coefficient of S.D., Combined S.D. for two groups.                |           |
|      | 1.14: Coefficient of Variation (C.V.): Definition and its uses.   |           |
|      | 1.15: Numerical Examples.                                         |           |
| 2    | Analysis of Bivariate Data:                                       | 15        |
|      | Correlation:                                                      |           |
|      | 2.1: Concept and types of correlation.                            |           |
|      | 2.2: Methods of studying correlation, scatter diagram,            |           |
|      | Karl                                                              |           |
|      | Pearson'scorrelation coefficient (r), computation of r for        |           |
|      | ungrouped data, interpretation of $r = -1$ , $r = 0$ , $r = +1$ . |           |
|      | 2.3: Spearman's rank correlation coefficient(R),                  |           |
|      | computation of R                                                  |           |
|      | (with and without tie).                                           |           |
|      | Regression:                                                       |           |
|      | 2.4: Concept of regression.                                       |           |
|      | 2.5: Lines of regression, regression coefficients. Properties of  |           |
|      | regression coefficients (only statements)                         |           |
|      | 2.7: Numerical examples on correlation and                        |           |
|      | regression.                                                       |           |

#### **Reference Books:**

1. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics- Sultan & Chand 2. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.

#### List of Practicals:

| Sr. No. | Title of Experiment                        |
|---------|--------------------------------------------|
| 1       | Measure of Dispersion -I (ungrouped data)  |
| 2       | Measure of Dispersion -II (grouped data)   |
| 3       | Measure of Dispersion -III (C.V)           |
| 4       | Correlation I (Karl Pearson)               |
| 5       | Correlation II (Rank correlation)          |
| 6       | Regression I                               |
| 7       | Regression II                              |
| 8       | Summary statistics using MS- Excel         |
| 9       | Correlation and Regression using MS- Excel |

#### Assessment Structure

### Structure of Question Paper

### Nature of Theory Question Paper

#### Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.

#### Time: 2-hour

### **Total Marks: 40**

DEPART

VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

| NT - Low                         | Marks    |
|----------------------------------|----------|
| Question Number                  | (8x1=8)  |
| Q.1. Choose correct alternative. | (0       |
|                                  | (8x2=16) |
| Q.2 Attempt any two.             | A        |
| i)                               |          |
| ii)                              |          |
| iii)                             | (4x4=16) |
| Q.3. Attempt any four.           | A        |
| a)                               |          |
| b)                               |          |
| c)                               |          |
| d)                               |          |
| e)                               |          |
| f)                               |          |

# Evaluation Pattern for practical Course: Marks Distribution of Practical (LAB) course: Total Marks: 25

| Course | Experimental<br>work | Journal<br>assessment | Seminar/<br>Mini<br>Project | Total<br>Marks |
|--------|----------------------|-----------------------|-----------------------------|----------------|
| Major  | 20                   | 05                    | 5                           | 25             |
| OE     | 20                   | 05                    | -                           | 25             |