Concept of p value

Mr. Atish Tangawade

Assistant Professor Department of Statistics Vivekanand College, Kolhapur (Empowered Autonomous) Nowadays use of p-value is becoming more and more popular because of the following two reasons:

- 1. Most of the statistical software provides p-value rather than critical value.
- 2. p-value provides more information compared to critical value as far as rejection or do not rejection of H_o .

Definition of p Value

The p-value is the probability of obtaining a test statistic equal to or more extreme (in the direction of supporting H_1) than the actual value obtained when null hypothesis is true.

The p-value also depends on the type of the test. If test is one-tailed then the p value is defined as:

```
For right-tailed test:
```

 $p\text{-value} = \mathsf{P}[\mathsf{Test}\ \mathsf{Statistic}\ (\mathsf{T}) \geq \mathsf{observed}\ \mathsf{value}\ \mathsf{of}\ \mathsf{the}\ \mathsf{test}\ \mathsf{statistic}]$

For left-tailed test:

 $p\text{-value} = \mathsf{P}[\mathsf{Test}\ \mathsf{Statistic}\ (\mathsf{T}) \leq \mathsf{observed}\ \mathsf{value}\ \mathsf{of}\ \mathsf{the}\ \mathsf{test}\ \mathsf{statistic}]$

p-value = $2P[T \ge |observed value of the test statistic|]$

For two-tailed test: General Case

p-value = 2 min{
$$P[T \le t], P[T \ge t]$$
}
where t is observed value of test statistic

Example1. One roll of a pair of dice

- *H*_o : dice are fair & Test is one tailed(assume)
 - Test statistic is T = "The sum of the rolled numbers"
- Here, sample space S={(1,1), (1,2),...,(6,6)} so n(S) = 36 Let outcome of this random experiment is both dice show 6 yielding a test statistic T= 12.

Test Statistic(t)	2	3	 12
Probability	$\frac{1}{36}$	$\frac{2}{36}$	 $\frac{1}{36}$

So,
$$p - value = P[T \ge 12] = \frac{1}{36}$$

assume a significance level $\alpha = 0.05$

Researcher would deem this result significant and would reject the hypothesis that the dice are fair.

Example2. Flips a coin five times in a row

- \blacksquare H_o : coin is fair
- Test statistic is T = "Total number of heads" Let $\alpha = 0.05$
- Here, sample space $S = \{(HHHHH), ..., (TTTTT)\}$ so n(S) = 32

Let outcome of this random experiment is heads each time (HHHHH) yielding a test statistic T= 5. In a one-tailed test, p-value = $\frac{1}{2^5} = 1/32 \approx 0.03$ **Decision**: Reject the hypothesis that the coin is fair. In a two-tailed test, p-value = $2\frac{1}{2^5} = 2/32 \approx 0.06$, **Decision**Fail to reject H_0 . Suppose a researcher flips a coin some arbitrary number of times n and H_0 : The coin is fair and $\alpha = 0.05$ Let test statistic(T) = The total number of heads. Suppose the researcher observes heads for each flip, $T = n \& p - Value = \frac{2}{2^n}$. If n = 5, the $p - Value = \frac{2}{2^5} = 0.0625$ So, $p > \alpha$ But if n = 10, the $p - Value = \frac{2}{2^5} \approx 0.002$ So, $p < \alpha$ This demonstrates that in interpreting p-values, one must also know the sample size, which complicates the analysis. Let us consider, random experiment of flipping a coin 10 times and it resulted in {HTHTHTHTHT},

 H_0 : Coin is fair and alternative is two sided

Case1: Test Statistic(T):Total number of heads, So T = 5Since, 5 is expected value of T implies p Value = 1 We do not reject H_0

Case2: Test Statistic(T):Number of alternations, So T = 9 p Value = $\frac{2}{2^9} = 0.0039$ Since, $p < \alpha$ We reject H_0

This example demonstrates that the p-value depends completely on the test statistic used.

- 1. The p-value is not the probability that the null hypothesis is true, nor is it the probability that the alternative hypothesis is false it is not connected to either of these.
- 2. The p-value is not the probability of falsely rejecting the null hypothesis.
- 3. The p-value is not the probability that replicating the experiment would yield the same conclusion.
- 4. The significance level, such as 0.05, is not determined by the p-value.

