Vivekanand College, Kolhapur (Empowered Autonomous) Department of Statistics M.Sc – I & II (Statistics & Applied statistics) Internal Examination Sept. - 2024

Notice

Date: 13/09/2024

All the students of M.Sc. -I & II (Statistics & Applied Statistics) are hereby informed that, the Internal Examination of Semester -I & III will be held as per following time table.

Sr.No.	Date	Time	Marks	Course Code	Course Name
1	24/09/2024	11.15 am to	20	DSC17STA11 / DSC18STA11	Distribution Theory
2	25/09/2024		20	DSC17STA12/ DSC18STA12	Estimation Theory
3	26/09/2024		10	DSC17STA13/ DSC18STA13	Statistical Computing
	25/00/2021	12.15 pm	20	DSE17STA11	Mathematical Statistics
4	27/09/2024		20	DSE18STA11	C Programming
5	28/09/2024		20	RMD17STA11/ RMD18STA11	Research Methodology

M.Sc. - I (Statistics & Applied Statistics)

M.Sc. - II (Statistics & Applied Statistics)

Sr.No.	Date	Time	Marks	Course Code	Course Name
1	24/09/2024	11.15 am to 12.15 pm	20	DSC17STA31 / DSC18STA31	Stochastic Processes
2	25/09/2024		20	DSC17STA32 / DSC18STA32	Statistical Learning & Data Mining
3	26/09/2024		20	DSC17STA33 / DSC18STA33	Python Programming
3.20			20	DSE17STA32	Generalised Linear Model
4	27/09/2024		20	DSE18STA32	Statistical Quality Control

Nature of Question Paper

a) For 20 Marks :-

Que. 1) 5 MCQ's each carrying 1 mark

Que. 2) Attempt any 3 questions out of 4 (5 X 3 = 15)

b) For 10 Marks :-

Que. 1) 2 MCQ's each carrying 1 mark

Que. 2) Attempt any 2 questions out of 3 $(4 \times 2 = 8)$

Instruction :- Students should present at least 09 min. before examination.

(Ms. Shinde)

DEPARTMENT OF STATISTICS VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTOMOMOUS)

then decompose *F* into distribution function of discrete part and continuous part. Also find E(X)

Vivekanand co	ollege, Kolhaj Departma	our (Empower	red Autonomous)	
M.Sc. I Sem I (Statistic	s / Applied S	tatistics) Inter	nal Examination 202	24-25
Č	ourse Name: 1	Estimation Th	eory	
Date :25/09/2024	Time:11.15	am to 12.15 p	m Total Marks	20
Q1) Choose Correct Alternative			(1×	(5 = 5)
i) Let 5, 8, 3, 6, 8 are observation	ons from exp (mean λ) then u	inbiased estimate of λ	is
a) 3 b) 6 c) 3	5 d) 8			
ii) If X ₁ , X ₂ Xn is a random s	ample of size	n from N (θ , θ^2	²) then minimal suffic	cient
statistic for θ is				
a) $(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2})$	b) $\sum_{i=1}^{n} x_{i=1}$	$c_i = c \sum_{i=1}^n c_i$	x_i^2 d) N	lone of these
iii) M.L.E is same as moment es	timator if the	distribution		
a) belongs to exponential fa	amily		b) holds regularity c	onditions
c) has support free from pa	rameter of est	imation	d) has unique M.L.E	
iv)Moment estimator of θ based	on random sa	mple of size n	from U(θ ,1) is	
a) $2X + 1$ b) 1	2X - 1 ((X - 2) = (X - 2)	d) $2X - 2$	
v)The sufficient estimator of the	parameter λ o	f Poisson distr	ibution based on a sar	nple X_1, X_2, X_3
is given by	X + 037 + 37		1) 037 + 37 + 1	37
a) $X_1 + X_2 + X_3$ b) .	$X_1 + 2X_2 + X_3$	c) $X_1 + X_2 + 2X_3$	d) $2X_1 + X_2 +$	X ₃ 5 15)
Q2) Attempt any Three			(3×	5 = 15)
1) Suppose X_1, X_2, \dots, X_n is a rasult sufficient statistics for θ .	ndom sample	from U $(0, \theta)$	distribution then obtai	in complete
ii) Define one parameter expon- for this family.	ential family c	of distributions.	. Obtain minimal suffi	icient statistic
iii) Let X_1, X_2, \dots, X_n be a random	m sample from	n P (λ) where ($0 < \lambda \leq 2$ then find the	e MLE of λ .
iv) Let X_1, X_2, \dots, Xn be a random	m sample fron	n Ν (μ,1). Show	w that $\frac{\sum Xi^2}{n} - 1$ is unbi	ased estimator of μ^2
Vivekanand col	lege, Kolhap Departmer	our (Empowe nt of Statistic	ered Autonomous) s	

M.Sc. I Sem I (Statistics / Applied Statistics) Internal Examination 2024-25 Course Name: Statistical Computing

	Course	Name: Sta	atistical Comp	uting		
100/2024	· · ·	11 1 -	1 10 15		4 1 3	

Date :26/09/2024	Time:11.15 am to 12.15 pm	Total Marks 10

Q1) Choose Correct Alternative

- 2)
 - i) $\underline{}$ function in MS Excel worksheet represents the total number(s) of entries in the cell(s).

a) SUM	b) AVG	c) COUNT	d) TOTAL
ii) Which one is not a	a function in ms exe	cel?	

a) PROPER b) AVERAGE c) COUNT d) CLEAR

Q2) Attempt any Two

- iii)Discuss the analysis tool pack in MSEXCL.
- ii) Explain functions/procedure in MSEXCEL for the following
 - a) To compute correlation coefficient between two variables
 - b) To compute CDF of normal distribution
 - c) To generate random numbers from U (1,10) distribution
 - d) To compute geometric mean of numbers

iii) Write note on Data Manipulation in MSEXCEL

- $(2 \times 4 = 8)$

 $(1 \times 2 =$

Vivekanand college, Kolhapur (Empowered Autonomous) Department of Statistics L Sem I (Statistics / Applied Statistics) Internal Examination 2024-25

M.Sc. I Sem I (Statistics / A	pplied Statistics)	Internal I	Examination	2024-23
	Course	Nome C nue	no manina		

		Course ha	ime. C programm	mg	
	Date :27/09/	2024 Time:11.1	15 am to 12.15 pm	Total Marks 20	
Q1) C	hoose Correct A	lternative		$(1 \times 5 = 5)$	
i)	Which data ty	pe is used to store a	single character in	C?	
	A) int	B) char	C) float	D) double	
ii)	Which loop is	used to iterate over	a block of code for	a specified number of iteratio	ns?
	A) whi	le B) f	for C) do-w	vhile D) if-else	
iii)) Which of the f	following is a charac	cteristic of an algor	ithm?	
	A) Ambiguity	B) Finitenes	ss C) Com	plexity D) Redundancy	,
iv)) What is the pu	rpose of the malloc	() function in C?		
	A) Allocate m	emory dynamically	B) Deal	locate memory dynamically	
	C) Initialize m	emory	D) Free	memory	
v)	How are array	s passed to function	s in C?		
	A) By value	B) By reference	C) By address	D) By pointer	

Q2) Attempt any Three

iv)Describe the if-else statement in C. Explain its syntax and usage.

v) Explain the different types of operators in C also provide example of each.

iii) Describe the symbols used in a flowchart and their meanings. Explain the importance of each symbol.

iv) Describe the concept of pointers in C. Explain their declaration, initialization, and usage.

 $(3 \times 5 = 15)$

Vivekanand college, Kolhapur (Empowered Autonomous) Department of Statistics M.Sc. I Sem I (Statistics / Applied Statistics) Internal Examination 2024-25 Course Name: Research Methodology Date :28/09/2024 Time:11.15 am to 12.15 pm Total Marks 20

Q1) Choose Correct Alternative

 $(1 \times 5 = 5)$

 $(3 \times 5 = 15)$

- 1) The ratio estimator is more precise than SRSWOR estimator for the population total if ... A) $\rho > \frac{1}{2} \frac{c_x}{c_y}$ B) $\rho > \frac{c_x}{c_y}$ C) $\rho > \frac{1}{2} \frac{c_y}{c_x}$ D) $\rho > \frac{c_y}{c_x}$
- 2) Horvitz-Thompson estimator has a variance smaller then the sample mean because,
 A) Horvitz-Thompson estimator assumes probabilities proportional to the size of sampling units

B) Horvitz-Thompson estimator assumes simple random sampling for selecting of the sample C) Horvitz-Thompson estimator assigns unequal weights to sampling units

D) Horvitz-Thompson estimator is similar to ratio estimator

- 3) In stratified random sampling with stratum sizes $N_1 = 800$, $N_2 = 300$ and stratum variability $S_1 = 144$, $S_2 = 400$ respectively, then under Neyman allocation, the ratio of sample sizes n1/n2 is given by ----
 - A) 1.60 B) 0.96 C) 2.67 D) 1
- 4) For an SRSWOR (N, n), the probability that a specified unit is included in the sample is,

	A) $\frac{1}{N}$	B) $\frac{n}{N}$	C) $\frac{1}{(NC_n)}$	D) $\frac{1}{N(N-1)}$
5)	In sample survey	one can have the	following error	
	A) Sampli	ng error]	B) non-Sampling error
	C) Both sa	ampling and non-	-sampling error	D) No error

Q2) Attempt any Three

a) With usual notations, in linear systematic sampling, show that

$$V(\overline{y}_{sys}) = \frac{N-1}{N}S^2 + \frac{n-1}{n}S^2_{wsy}.$$

- b) Develop a Des-Raj estimator for sample of size two and show that it is unbiased estimator of population total.
- c) Explain with example Lahiri's method of drawing sample in PPSWR sampling.
- d) What is the problem of non-response? Also explain Deming technique for the effect of call-backs.

Vivekanand college, Kolhapur (Empowered Autonomous) **Department of Statistics** M.Sc. I Sem I (Statistics / Applied Statistics) Internal Examination 2024-25

Course Name: Stochastic Process

Date :24/09/2024 **Total Marks 20** Time:11.15 am to 12.15 pm

Q1) Choose Correct Alternative

 $(1 \times 5 = 5)$ i) If $F_{11} = 1$ then state 1 is a. a) Transient b) recurrent c) state with period one d) none of these ii) Stationary distribution of Markov chain $\{X_n, n \ge 0\}$ whose one step t.p.m is $\begin{bmatrix} 1/3 & 2/3 \\ 3/4 & 1/4 \end{bmatrix}$ is a. a) $\begin{bmatrix} \frac{7}{17}, \frac{11}{17} \end{bmatrix}$ b) $\begin{bmatrix} \frac{9}{17}, \frac{8}{17} \end{bmatrix}$ c) $\begin{bmatrix} \frac{4}{7}, \frac{3}{7} \end{bmatrix}$ d) $\begin{bmatrix} \frac{5}{9}, \frac{4}{9} \end{bmatrix}$ iii) The maximum temperature of particular city on n^{th} day is a example of a) discrete time, continuous state space. b) discrete time, discrete state space. c) continuous time, continuous state space. d) continuous time, discrete state space. iv) One step of Markov chain $\{X_n, n \ge 0\}$ whose state space is $\begin{bmatrix} 0 & 1 \\ q & p \end{bmatrix}$ and initial distribution of markov chain is uniform distribution then $P[X_2 = 1]$ is a. a) $q - \frac{q^2}{2}$ b) $1 - q + \frac{q^2}{2}$ c) 1 - q d) $\frac{q}{2}$ v) A one step t.p.m is $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$ then absorbing state is b) 1 c) 0 and 1 d) none of these a. a) 0 Q2) Attempt any Three i) Consider one step t.p.m. $P = \begin{bmatrix} 3/4 & 1/4 & 0\\ 1/4 & 1/2 & 1/4\\ 0 & 3/4 & 1/4 \end{bmatrix}$ with state space S= {0,1,2} and initial probability distribution is $P[X_0=i] = 1/3$, i=0,1,2 then obtain Find stationary probability distribution of Markov chain iii) Define transition probability matrix (TPM). Consider that particle may be at position

- r, r=0, 1, 2, ..., k (k>0) of the x-axis. From state r it move to (r+1), $1 \le r \le k-1$ with probability p or to (r-1) with probability q=1-p. As soon as it reaches to state 0 it remains there with probability a (0 < a < 1) and is reflected to state 1 with probability (1a); if it reaches to state k it remains there with probability b (0 < b < 1) and is reflected to state k-1 with probability (1-b). Construct the TPM.
- iv) Prove that finite irreducible Markov chain is ergodic.

Vivekanand college, Kolhapur (Empowered Autonomous)				
Departm	ent of Statistics			
M.Sc. II Sem III (Statistics / Applied	l Statistics) Internal	Examination 2024-25		
Course Name: Statistic	cal Learning & Data	a Mining		
Date :25/09/2024 11me:11.15	am to 12.15 pm	Iotal Marks 20		
Q1) Choose Correct Alternative		$(1 \times 5 = 5)$		
1.Decision tree is used in				
a) Clustering b) Prediction	c) Classification	d) All of the above		
2. Which of the following strategy is not use	d for data transforma	tion?		
a) smoothing b) normalization c) s	summarization d) fil	ling in missing values		
3. In Min-max normalization the data values	s are transformed in s	uch a way that the new		
Values lie in the interval				
a) (-1,1) b) (-1,0)	c) (0,1)	d) $(0,\infty)$		
4. Which of the following refers to the task	of inferring a model f	from labelled training data?		
a) Unsupervised learning b) Sup	ervised learning			
c) Reinforcement learning	d) None of the abov	e		
5. The full form of KDD is				
a) Knowledge Database	b) Knowledge Disco	overy Database		
c)Knowledge Data House	d) Knowledge Data	Definition		
Q2) Attempt any Three		$(3 \times 5 = 15)$		
a) Explain different attribute selection	measures in decision	tree.		
b) Explain KNN technique. How does	t work?			
c) Explain logistic regression in detail.				
d) Define data warehouse. Explain vari	ous steps in data prep	processing.		

Vivekanand college, Kolhapur (Empowered Autonomous) Department of Statistics

M.Sc. II Sem III (Statistics / Applied Statistics) Internal Examination 2024-

2	5
_	\mathbf{c}

	Course Name: Python Programming	
Date :26/09/2024	Time:11.15 am to 12.15 pm	Total Marks 10

Q1) Choose Correct Alternative				$(1 \times 2 = 2)$		
i) Which of the following is an immutable data type in Python?						
a.	A) List	B) Tuple	C)	Dictionary	D) Set	
ii) Which control statement is used to execute a block of code if a condition is true?						
a.	A) if	B) else	C) for	D) while		
Q2) Attempt	any Two				$(2 \times 4 = 8)$	

- a) Describe the different types of arithmetic operators in Python 3. Provide examples for each type. Explain their precedence and associativity.
- b) Describe the characteristics of the string data type in Python 3. How can strings be manipulated?
- c) Explain the concept of boolean data type in Python 3. How is it used in conditional statements?

Shri Swami Vivekanand Shikshan Sanstha's

Vivekana	nd College, Kolhapur (F	Empowered Autono	omous)
M.Sc. II (Appl	ied Statistics)(Sem III) Ir	nternal Examination	Sept2024
	Course- Statistical Qu	ality Control	-
Date: 27/09/2024	Time: 11.15am t	o 12.15pm	Marks: 20
•••••			••••••
Q.1) Select the most correct	Alternative.		(5)
1) The control chart for .	is also called as u	chart.	
a) nonconformities	b) frac	tion nonconforming	7
c) nonconformities per	unit d) prod	cess mean	
2) The control chart desig	ned to deal with the defect	cts or nonconformiti	es of a product, is called as
· · · · · · ·			A .
a) p chart b) c chart	c) R chart d) s chart		
3) S chart is used to moni	torof a quality ch	aracteristic.	
a) Mean b) Range	c) variability d) Attri	butes	
4) EWMA charts are better	than Shewhart control ch	arts in detecting the	2 shifts.
a) Large process b) Me	dium process c) Small	process d) Every r	process
5) Which of these is a disac	lvantage of Shewhart con	trol charts?	
a) Can be for both attr	ibutes and variables b) Gives process info	rmation
c) Using only the info	rmation about the last san	nple observations	
d) Uses every informa	tion about the process	1	
0.2) Attempt any three	1		(15)
1) Describe the tree diagram	n with example.		

- Describe the graphical tools boxplot and normal probability plot.
 Describe construction of p chart.
 Describe in general the design and implantation of a Shewhart control chart.