## Department of Physics

## Vivekanand College, Kolhapur (Autonomous)

## Notice for Internal Examination in Physics for B.Sc. - I and II

It is hereby informed that, students of B.Sc. - I and II should note that their Internal Examination in Physics will be conducted as per following time - table.

| Date | Time | Class | Subject | Topics |
| :---: | :---: | :---: | :---: | :---: |
| Monday, | 11.00 to | B.Sc. - II | Paper - III | Galaxies |
| $10 / 04 / 2023$ | 12.00 AM | (Astrophysics) | Paper - IV | Fluids |
| Tuesday, | 10.00 to | B.Sc. - I | Physics Paper - III | Network Theorem |
| $11 / 04 / 2023$ | 11.00 AM |  | Physics Paper - IV | Vector Algebra |
| Tuesday, | 10.00 to | B.Sc. - II | Physics Paper - VII | Theory of Radiation |
| 11/04/2023 | 11.00 AM |  |  |  |
|  |  |  | Physics Paper - VIII | Interference |

Seating Arrangement (Engineering Building)

| Sr. No. | Class | Room / Block No. | Roll No. |
| :---: | :---: | :---: | :---: |
| 1) | B.Sc. - I | 301 (03 ${ }^{\text {rd }}$ Floor) | 7201 to 7252 |
| 2) |  | 312 (03 ${ }^{\text {rd }}$ Floor) | 7253 to 7285 |
| 3) |  | 313 (03 ${ }^{\text {rd }}$ Floor) | 7286 to 7318 |
| 4) |  | 314 (03 ${ }^{\text {rd }}$ Floor) | 7319 to 7352 |
| 5) |  | 315 (03 ${ }^{\text {rd }}$ Floor) | 7353 to 7390 |
| 6) |  | 319 (03 ${ }^{\text {rd }}$ Floor) | 7392 to 7422 |
| 7) |  | B.Sc./MSc Hall 01 (04 ${ }^{\text {th }}$ Floor) | 7428 to 7557 |
| 8) |  | B.Sc./MSc Hall 02 (04 ${ }^{\text {th }}$ Floor) | 7558 to 7602 |
| 9) | B.Sc. - II | BCS Lecture Hall (04 ${ }^{\text {th }}$ Floor) | 7701 to 7740 |
| 10) |  | B.Sc./MSc Hall $02\left(04^{\text {th }}\right.$ Floor) | $\begin{gathered} 7741 \text { to } 7777,7976, \\ 7983,7984,7990 \end{gathered}$ |
| 11) | B.Sc. - II (Astrophysics) | Physics Practical Lab 02 |  |

## Nature of Question Paper

Q.1) Select correct alternative (10 Marks)
Q.2) Long answer type question (10 Marks, Attempt any One)
Q.3) Short answer type question (10 Marks, Attempt any Two)

## Total Marks: 30 Marks




HOD, Physics
Head of the

# Shri Swami Vivekanand Shikshan Sanstha's 

## Vivekanand College, Kolhapur (Autonomous)

## Internal Examination 2022-23

PHYSICS-DSC -1001D
B.Sc. - II, Sem - IV (Thermal and statistical physics II and Optics )

## Time: 30 Minutes

## Q. 1. Select Correct Alternatives

1. Two sources are said to be coherent if they have $\qquad$
(a) same wavelength
(b) constant path difference
(c) constant phase difference
(d) all the above
2. In a wave getting reflected from a denser medium, the additional phase difference introduced is $\qquad$
a) 0
b) $\pi / 2$
c) $\pi$
d) $2 \pi$
3. In Fraunhoffer's diffraction with respect to the obstacle $\qquad$
a) both source and screen are at finite distance
b) both source and screen are effectively at infinity
c) source is at finite distance and screen is at infinity
d) screen is at finite distance and source is at infinity
4. Cardinal planes with unit lateral magnification are-----
(a) principal planes
(b) focal planes
(c) nodal planes
(d) all the above
5. Natural light from any source is ----
(a) plane polarized
(b) elliptically polarized
(c) circularly polarized
(d) unpolarized

## Q. 2 Attempt any TWO

1. Obtain an expression Maxwell's Boltzmann statistics.
2. Obtain an expression Bose Einstein statistic.
3. Obtain an expression for resolving power of telescope and microscope.

## Q. 3 Attempt any ONE

1. Write a note on macrostate and microstate.
2. write a note on position space, momentum space and phase space.


## Vivekanand College, Kolhapur

## (Aufomomous)

## Department of Physics

Internal exam (2022-23)

## B.Sc.II Sem IV

Date:- 11/04/2023

## Attendance Sheet

| Roll No. | Name Of The Student | Signature |
| :---: | :---: | :---: |
| 7701 | Bhojkar Sanika Satish | Sanika |
| 7702 | Chavan Vaishnavi Ganesh | ¢ ${ }^{\text {chaver }}$ |
| 7703 | Chougale Shivani Shrikant | thinomes. |
| 7704 | Ekashinge Sourabh Amar | $\leq 5$ |
| 7705 | Fernandes Riya Inas | (R) |
| 7706 | Gavali Shubham Anil | cowali |
| 7707 | Gujare Om Parshuram | ms. |
| 7708 | Gujare Omkar Parshuram | Qurues |
| 7709 | Jadhav Prerana Suresh | Trionor. |
| 7710 | Jamadar Karishma Khudbuddin | W5. |
| 7711 | Kamble Priyanka Ashok | Prifankg? |
| 7712 | Kamble Rutik Viththal | Famble |
| 7713 | Karake Sayyam Deshbhushan | gexyam |
| 7714 | Koli Prajakta Mahesh | Roli |
| 7715 | Koruche Pratiksha Dipak | PCB |
| 7716 | Morbale Aditya Sanjay | Mochate |
| 7717 | Mujawar Ammar Mukhtar | Mujavas. |
| 7718 | Musale Aditya Santosh | Mrasala |
| 7719 | Patil Shreyas Balwant | Spatil |
| 7720 | Patil Vaishnavi Gorksha | Matio. |
| 7721 | Shinde Atharva Dattatray | tesind |
| 7722 | Anchi Siddharth Vikas | escaldhasth |
| 7723 | Atigre Sarthak Sujit | Eorthat. |
| 7724 | Buchade Vivek Vasant | $\checkmark$ unchade |
| 7725 | Chavan Snehal Bhikaji | (3)harana. |
| 7726 | Chougule Rohit Anand | Quonit. |
| 7727 | Dangar Noor Sanaulla | - Dansfate |
| 7728 | Desai Sejal Anil | LEgal. |
| 7729 | Gadkari Sourav Sharad | 人usan |
| 7730 | Jadhav Ananya Netaji | 4 Tadiren. |
| 7731 | Kumbhar Trupti Arvind | c]eurto |



| 7732 | Patil Dipti Dilip | reatio |
| :---: | :---: | :---: |
| 7733 | Patil Sudarshan Rajaram | rute |
| 7734 | Pawar Shubham Sudhir | SP |
| 7735 | Pendhari Samir Bakash | IM |
| 7736 | Pirjade Sahad Maksud | sirade |
| 7737 | Shinde Ajit Baban | Af ${ }^{\text {cti }}$ |
| 7738 | Shinde Shivam Firoj | cainde |
| 7739 | Swami Yash Anil | Sulams |
| 7740 | Terani Akshata Sanjay | Aesani. |
| 7741 | Burambale Kartik Nandkumar | cortik |
| 7742 | Chavan Aishwarya Sanjay | \& havan. |
| 7743 | Chougale Anuja Anil | Aehavan |
| 7744 | Dhavale Pratik Vijay | Eratik |
| 7745 | Dongare Rushi Chandrakant | R. C. Dongose |
| 7746 | Gaikwad Sanika Balaso | spajtewad. |
| 7747 | Gawade Shweta Sanjay | Sheureda |
| 7748 | Ghatage Shivani Shivaji | shat-ite |
| 7749 | Gudle Pallavi Bhujgonda | Gus gratye |
| 7750 | Gurav Reva Sunil | 18 |
| 7751 | Jadhav Sandesh Daji | Bthav |
| 7752 | Karne Dipali Ramesh | deacne |
| 7753 | Kashid Namrata Maruti | ${ }^{+}$ |
| 7754 | Magadum Anuja Balaso | - 14 |
| 7755 | Mane Siddhi Bipinkumar | sidanm |
| 7756 | Metkari Sourabh Dadaso | E1 |
| 7757 | Mohite Srusthi Pandharinath | Alchite |
| 7758 | More Shivani Pandurang | enivan |
| 7759 | Parit Vaishnavi Sudesh | raceit |
| 7760 | Patil Hardik Dilip | Fatio. |
| 7761 | Patil Tejaswini Shahajirao | Jatil |
| 7762 | Rathi Shreya Sanjay | Hacthe |
| 7763 | Satpute Sakshi Pandurang | grestre. |
| 7764 | Shinde Neha Rajesh | ptehee |
| 7765 | Shinde Pallavi Savanta | Pininde |
| 7766 | Shingare Sanskruti Sanjay | doningerer |
| 7767 | Singh Sadhana Sanjay | sonefth. |
| 7768 | Vhanmane Shubham Abaso | L3 |
| 7769 | Demanna Shreyashree Shantinath | $\rightarrow$ nucutr |
| 7770 | Hasbe Saad Sanjay | rasme. |
| 7771 | Khilare Rutik Sunil | hilare |
| 7772 | Khot Shrutika Sambhaji | - Whert. |
| 7773 | More Omkar Nandkumar | Minkat |
| 7774 | Pathan Misam Ashfak | Dothan |
| 7775 | Patil Dhanshree Madhusudan | atcetil |
| 7776 | Sutar Sushant Vilas | \$ |
| 7777 | Shaikh Adnan Mohammadyasin | - 4 innar |
| 7983 | Patil Abhishek Ananda | Aveadil |


| 7984 | Desai Pratik Mahesh | Pefal |
| :--- | :--- | :--- |
| 7990 | Khot Ganesh Vitthal | Cherat |

Internal Examinar.... Solattle




1v4. a. principle planes
5 d. unpolarised.

62
Maxwell's Boltzmann statistics
Consider an assembly of y gas molecules whose energies are limited to $k$ values $u_{1} u_{2} u_{3} \ldots$ Uh. If there are $n_{i}$ molecules of energy $u_{i}$ total energy of assembly is U . most probable distribution of molecules

1. The total number of molecules is constant

$$
\begin{array}{ll} 
& N=n_{1}+n_{2}+n_{3}+\cdots+n_{K}=\text { constant } \\
& \delta \varepsilon \quad \delta N=\delta n_{1}+\delta n_{2}+\delta n_{3}+\cdots \delta n_{k}=0 \\
\therefore & \varepsilon \delta n_{i}=0 \tag{1}
\end{array}
$$

2. The total energy of assembly is constant $A_{1}$ molecules have energy $u_{1}$, each $n_{2}$ molecules have energy $u_{2}$ and $s 0$ on unto $n_{k}$ molecules have energy uk

$$
\begin{align*}
& U=u_{1} n_{1}+u_{2} n_{2}+\ldots+u_{k} n_{k}=\text { constant } \\
& \text { } \sigma \varepsilon \quad \delta u=u_{1} \delta n_{1}+u_{2} \delta n_{2}+\ldots+u_{k} \delta n_{k}=0 \\
& \therefore \quad \sum u_{i} \delta n_{1}=0 \quad \text { (2) } \tag{2}
\end{align*}
$$

$\therefore$ coral probability of particular distribution

$$
W=\frac{N i}{n_{1}!n_{2}!\cdots n_{k}!}\left(g_{1}\right)^{n_{1}}\left(g_{2}\right)^{n_{2}}\left(g_{3}\right)^{n_{3}} \ldots\left(g_{k}\right)^{n_{1}} \ldots
$$

For mast probable dis

$$
\delta \ln W=\delta\left(\ln N!-\sum \ln n_{i}!+\sum n_{i} \ln g_{i}\right)=0
$$

It gives

$$
\begin{equation*}
-\sum \ln n_{i} \delta n_{i}+\varepsilon \ln g_{i} \delta n_{i}=6 \tag{3}
\end{equation*}
$$

Multiply $e q^{n}$ (1) by $-\alpha$ and $e q^{n}$ (2) by $-\beta$
adding to $e q^{n}$ (3) adding to $\mathrm{eg}^{n}$ (3)

$$
\begin{aligned}
& \sum\left(-\ln n_{i}+\ln g i-\alpha-\beta u_{i}\right) \delta n_{i}=0 \\
& \therefore \quad \delta n_{i} \neq 0 \\
&-\ln n_{i}+\ln g_{i}-\alpha-\beta u_{i}=0 \\
& \therefore \ln n_{i}= \ln g_{i}-\alpha-\beta u_{i}=\ln g_{i}+\ln e^{-\alpha}+\ln e^{-\beta u_{i}} \\
&= \ln \left(g_{i} e^{\alpha} \cdot e^{-\beta}\right) \\
& \therefore \quad n_{i}= g_{i} e^{-\alpha} e^{-\beta u i}
\end{aligned}
$$

QU.

1. Mierostate

A phase point for any molecule may be supposed to lie inside one these cells. To define micristate of assembly the position of phase point for each and every molecule should be specified distinctly
2. Macnostate -
of an assembly of gas molecules can be defined by specifying the no. of phase points in each cell of phase space such as $n_{1}$ phase points in cell 1, $n_{2}$ phase points in cell 2

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Supplement No.
Roll No. : 7721
Class
: B.Sc-II
Sem IV

Signature
of
Supervisor
subject: Thermal and statistical II Test / Tutorial No. :
Div. :

QI.

1. $d$. all the above
2. b. $\pi / 2$
3. b. both source and screen are effectively at infinity
4. a. principle planes
5. d. unpolarised

QP.

1. Maxwell's Boltzmann statistics -

Consider an assembly of $N$ gas molecules whose energies are limited to $K$ values $u_{1} u_{2} \ldots u_{k}$ If there are $n_{i}$ molecules of energy $u_{i}$ total energy of assembly is $U$
Total number of molecules is constant

$$
\begin{aligned}
& \text { tal number of molecules is } \\
& \therefore N=n_{1}+n_{2}+\cdots+n k=\text { constant }
\end{aligned}
$$

De $\delta N=\delta n_{1}+\delta n_{2}+\ldots+\delta n_{k}=0$

$$
\begin{equation*}
\therefore \quad \sum \delta n_{i}=0 \tag{1}
\end{equation*}
$$

2. The total energy of assembly is constant $n_{1}$ molecules have energy $u_{1}$ and $n_{2}$ molecules have energy $U_{2}$ and so on unto $n_{k}$ molecules have energy $u_{k}$

$$
U=u_{1} n_{1}+u_{2} n_{2}+\ldots+u_{k} n_{k}=\text { constant }
$$

$\sigma \varepsilon \quad \delta u=u_{1} \delta n_{1}+u_{2} \delta n_{2} \ldots+u_{k} \delta n_{k}=0$

$$
\therefore \quad \sum u_{i} \delta n_{i}=0
$$

total probability of particular dis

$$
\therefore W=\frac{N_{i}}{n_{1}!n_{2}!\cdots n_{k}!}\left(g_{1}\right)^{n_{1}}\left(g_{2}\right)^{n_{2}} \ldots\left(g_{k}\right)^{n_{k}}
$$

for most Probable distribution

$$
\therefore \delta \ln W=\delta\left(\ln N!-\sum \ln n_{i}!+\sum n_{i} \ln g_{i}\right)=0
$$

It gives,

$$
\begin{equation*}
-\sum \ln n_{i} \delta n_{i}+\sum \ln g_{i} \delta n_{i}=0 \tag{3}
\end{equation*}
$$

$\therefore$ Multiph eq (1) by $-\alpha$ and $e q^{n}$ (2) by $-\beta$ adding to eq $n$ (3)

$$
\begin{gathered}
\therefore \quad \sum\left(-\ln n_{i}+\ln g_{i}-\alpha-\beta u_{i}\right) \delta n_{i}=0 \\
\therefore \quad \delta n_{i} \neq 0 \\
\therefore \quad-\ln n_{i}+\ln g_{i}-\alpha-\beta u_{i}=0 \\
\therefore \ln n_{i}=\ln g_{i}-\alpha-\beta u_{i}=\ln g_{i}+\ln e^{-\alpha}+\ln e^{-\beta u u_{i}} \\
=\ln \left(g_{i} e^{-\alpha} e^{-\beta u_{i}}\right) \\
\therefore \quad n_{i}=g_{i} e^{-\alpha} e^{-\beta u i}
\end{gathered}
$$

## Shri Swami Vivekanand Shikshan Sanstha's

## Vivekanand College, Kolhapur (Autonomous)

## Internal Examination 2022-23

ASTROPHYSICS-DSC-1001D
B.Sc. - II, Sem - III
(Galaxies, Cosmology, solar system \& cosmic electrodynamics)
Time: 30 Minutes
Marks: 30

## Q. 1. Select Correct Alternatives

1) A stellar spectrum is an $\qquad$ spectra which shows dark lines in the spectra.
a) absorption
b) emission
c) transmission
d) atomic
2) The group of stars with ionised helium lines in the spectra are known as $\qquad$ stars.
a) O
b) $F$
c) K
d) M
3) The coolest group of stars among all stars with surface temperature lower than 3500 K are $\qquad$ stars.
a) O
b) F
c) K
d) M
4) Nuclei having a constant binding energy per nucleon are relatively $\qquad$ nuclei.
a) unstable
b) stable
c) low atomic number
d) high atomic number
5) A stellar spectra is an $\qquad$ spectra which shows dark lines in the spectra.
a) absorption
b) emission
c) transmission
d) atomic

Short Answer Questions (Attempt any Three)

1) Explain the nebular hypothesis of formation of solar system.
2) Write a note on spectral classification of stars
3) Explain nuclear fusion reactions in stars.
4) Write a note on apparent luminosity of stars and magnitude scale.

## Long Answer Questions (Attempt any ONE)

1) Derive an equation for Equation of continuity (conservation of mass).
2) Derive an equation for Navier-Stokes equation for viscous fluid.


## Vivekanand College, Kolhapur

(Autonomous)

## Department of Physics

Internal exam (2022-23)
B.Sc.II (Astrophysics) Sem IV

Date:- 10/04/2023

## Attendance Sheet



Internal Examinar sslattic.
$\qquad$

" ज्ञान, विज्ञान आणि सुरांरकार यांसाठी शिक्षण प्रसार "
-शिक्षणमहर्षी डॉ. बापूजी साबुंखे
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :


Roll No. : 7484
Class: BSC-II

Signature of
Supervisor
Subject : Astrophystics
Test / Tutorial No. :
Div. :

3) Luminosity Cf Star $\rightarrow$

Luminosity is the total amount of electocmagnetic theory emitted per unit time by an abject. In 55 system luminosity is measured in tore Joules/second. The luminosity is mosisured in two forms mamely visible light and bolometric I uminosity. Generally the term luminosity means bolometric luminosity. The intrinsic brightness of a star is called its absolute luminosity. Which depend $s$ upon the size and temp of the star. temp of the star is equivalent to that of a black body reporducing the same power. The aperent luminosity is the observed luminosity which depends upon its absolute luminosity $f$
distance from the observer.

The luminosity of a celestial body is indicated in terms of magnitude. The concept of mag nitude vas first introduced by greek astronomer Hippachrus in $2^{\text {rd }}$ century BC. It was assumed that all stars are moving on the surface of celestial Sphere having radius of $20,000 \mathrm{Re}$. Initially the stars were grouped into 6 distrete categories depending upon their apparent brightness. The first magnitude stare are twice ais bright as the next magnitude stars. The second aras twice as third and so on clown to the faintest Stars. (6 th magnitude).
Q.2)

1) Measurement of brightness of a star is relative because one can compare the luminocitien of two stars or luminosity of a star with an artificial Standard source of light. Apart from visual method, the photographic and photo electric method are used for luminosity measurement

* Photographic method $\rightarrow$

This method is used after 1840 AD and uses the principle of photography ie. when a photographic plate is exposed to light and oleveloped the intensity of light is reflected on the photograph. When equal exposure time \& identical conditions of photographic plate develop bent is carried then stars of equal luminosited? produce an image of equal diameter. The optical image of a star is very small but due to scattering of photons. through photographic imulsion produce image of considerable size the size of image proportional to luminosity of a star.

Initially with a single starlight the photographic plates are exposed of different times like $5,10,20,40,80$ seconds. etc. I images are developed. The nature of images are Shown.

Now the light from the ster whose luminosity is to be measured is focused on the photographic plates for known exposure time \& image is developed.
" ज्ञान, विज्ञान आणि सुरांरकार यांसाठी शिक्षण प्रसार "

- ििभणमहबीं डों. बापूजी साबुंखे

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :
Roll No. : 7487
Class
:B.Sc II

Signature
of
Supervisor
Subject : Astrophysics
Test/Tutorial No.: Internal exam
Div. :

| Q.1 |  |
| :---: | :---: |
| 1) | d) Their distance from earth |

2) C) radio galaxies
3) a) 76 years
4) b) group of stars
5) a) spiral galaxy
6) as absorption
7) a) 0
8) d) $T A$
g) b) stable
(0) b) red old star

Q. 2
9) Measurement of brightness of a star is relative because one can compare the luminocities of two stars or luminosity of a star with an artificial standard source of light. Apart Prom visual method, the photographic and photoelectric method are used for luminosity measurement.

* Photographic method *

This method is used after 1840 AD and uses the principle of photography i.e when a photographic plate is exposed to light and developed the intensity of light is reflected on the photograph. When equal exposure time of identical conditions of photographic plate development is carried then stars of equal luminosities produce an image of equal diamete. The optical image of a star is very small but due to scattering of photons. Through photographic imulsion produce image of considerable size the size of image proportional to luminosity of a star

Initially with a single starlight the photographic plates are exposed of different times like $5,10,20,40,80$ seconds. ete. and images are developed. The nature of images are shown.

Now the light from the star cuhose luminosity is to be measured is focused on the photographic plates for known exposure time \&fimage is developed.
" ज्ञान, विज्ञान आणि सुरांरकार यांसाठी शिक्षण प्ररार "
-शिक्षणमहर्षी उॉ. बापूरी साबुंटे
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.

Roll No. $\square$
7491

Class
:
B.SC-II

Signature
of
Supervisor
Subject : Astrophysics
Test / Tutorial No. :

- Div. :

QI

1. d) their distance From earth
c) radio galaxies
a) 76 years
2. b) group of stars
a) Spiral galaxy
3. a) absorption
a) 0
d) $M$
b) Stable
$110 . b>$ red ald star


QR.
3. Luminosity of star-

Luminosity is the trial amount on $r$ dedromagnatic Incory emitted per unit tire by an cobiect. In CI system luminosity is measured in Toules/second. The luminosity is measured in two forms namely visible light. and bolometric luminosity

Generally the term luminosity mean es bolametric luminosity. The intrinsic brightness of star is called absolute luminosity, which depends upon the size and temp of the stor temp of ster is equivalent to that. of black body reproducing the same pirever The aperient luminosity is the observed luminosity which depend upon its absolute luminosity and distance from observer

The luminosity of celestial body is indicated in terms of magnitude. The concept of magnitude vas First introduced by greet astronomer Hippachrus in $2^{\text {nd }}$ centre $B C$. It was assumed that all stats are moving on surface of celestial sphere having radius of $20,000 \mathrm{Re}$. Initially the stars were grouped into 6 distrete Categories depend upon theist apparent brightness. The first magnitude stere are trice as bright as the the next magnitude stars.

