Vivekanand College, Kolhapur. (Autonomous) Department of Physics

Internal Examination Notice

 2019-20Date:11 September 2019
All students of class B.Sc. I, B.Sc. II and B.Sc. III are hereby noticed that the first term internal evaluation examination is scheduled as per following time table.

Nature of question paper:
For B.Sc. I: Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given four questions) for 10 marks For B.Sc. II : Long answer question (Any one from given two questions) for 10 marks Short answer question (Any two from given four questions) for 10 marks For B.Sc. II (Astro) : Long answer question (Any one from given two questions) for 10 marks Short answer question (Any two from given four questions) for 10 marks

For B.Sc. III : Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given four questions) for 10 marks
Internal Evaluation Examination 2019-20.
SEM I, SEM III and SEM V
Time Table

Sr. No.	Class	Paper	Date	Time
1.	B.Sc. I	Paper I	23/09/2019	11:00 am to 12:00 pm
2.	B.Sc. II	Paper III	23/09/2019	11:00 am to 12:00 pm
3.	B.Sc. II (Astrophysics)	Paper I	25/09/2019	11:00 am to 12:00 pm
4.	B.Sc. III	Paper V (section I)	26/09/2019	11:00 am to 12:00 pm
		Paper V (section II)		01:00 am to 2:00 pm
		Paper VI (section I)	27/09/2019	11:00 am to 12:00 pm
		Paper VI (section II)		01:00 am to 2:00 pm

Shri Swami Vivekanand Shikshan Sanstha's
 Vivekanand College, Kolhapur (Autonomous)
 Internal Examination 2019-20
 B.Sc. II SEM III

General Physics, Sound and Acoustics and Electronics and Semiconductor Devices

Time: 30 Minutes

Marks: 20
Q. 1. Long Answer Questions (Any one)

1) What is gyrostatic pendulum? Obtain an expression for its period.
2) Explain construction and working of cathode ray tube.

Q. 1. Long Answer Questions (Any one)

1) Write a note on riding on bicycle.
2) Write a note on a rifling of Barrel of Gun.
3) Write a note on Lissjous figure with examples.

Vivekanand College, Kolhapur

(Autonomous)

Department of Physics

Internal exam

B.Sc.II Sem III

Date:- 23/09/2019

Attendance Sheet

Roll No.	Name Of The Student	Signature
7550	Bachche Aomkar Prakash	W.
7551	Banasavade Omkar Devadas	Brmcar.
7552	Bhatale Sachin Sakharam	Eshatale
7553	Gole Gaurav Rajaram	creg
7554	Gurav Rutuja Ravindra	tweas
7556	Khandekar Pooja Sanjay	,
7557	Khatangale Shubhangi Prakash	Eratong
7558	Khatkale Prashant Prakash	Y 1
7559	Kudalkar Prajakta Shivaji	\%rudalce
7560	Mali Rohit Maruti	Frat
7561	More Shubham Laxman	Weotaval.
7562	Padaval Vaibhav Sadashiv	Vauplan
7563	Parab Vinayak Sumant	cedes
7564	Patil Aakansha Bhimarao	Flat
7565	Patil Akshay Dhanaji	aprall
7566	Patil Aniket Ananda	S5atil
7567	Patil Anuja Dattajirao	patil
7568	Patil Prajkta Krushnat	1
7569	Patil Shivani Vishnu	-
7570	Pawar Aakash Anandrao	zian
7571	Pirai Omkar Baban	Mepra
7572	Rane Rohit Ramdas	
7573	Salokhe Atish Pundlik	alckh
7574	Satbige Shivanand Sanjeev	Felar
7575	Sayyad Alsaba Javed	*eaba
7576	Shelar Avinash Sanjay	Ithelar
7691	Chavan Satish Rangrao	Shavan
7692	Chokakkar Viraj Vijay	Weoralcar
7693	Chougale Tejaswini Bajirao	Trovegule
7694	Chougule Snehal Anil	crenat
7695	Chougule Abhinandan Mahaveer	Aniseys

7696	Dalavi Pamdurang Narayan	
7097	Desai Vihram Jayaram	huirnt
$7(1) 8$	Uesai Ashwini Amarsinh	
7699	Galkwad Amrita Prakash	le AA．
7700	G iawade Vinayak Arjun	
7701	（ihorpade I）attatray Vishnu	
7702	Gothhinde Shrutika Bharat	adom
7703	Josef Susen Livis	
7704	Kadam Sainath Subhash	，
7705	Kamble Digvijay Pandurang	Naumble
7706	Kamble Mrunali Ramesh	\％owe
7707	Kamble Pratiraj Prakash	
7708	Kamble Shivani Shankar	gen
7709	Karade Yogesh Nitin	Nunambe
7710	Khambe Manisha Madhukar	
7711	Khandekar Sandip Sukumar	14
7712	Khot Akash Balaso	，
7713	Khude Gouri Angad	年
7714	Koli Sayali Santosh	D
7715	Kumbhar Pratiksha Appaso	2－ith
7716	Latthe Sammed Rajendra	onct．
7717	Lohar Neha Shankar	Avali
7718	Mali Anurag Pundlik	Shar．
7719	Mardane Pratiksha Shrikant	Rommare
7720	Methe Kishori Prakash	訨
7721	Mote Ramesh Annappa	mouera
7722	Mudekar Rutuja Ramachandra	－uidaris
7723	Mulani Subiha Husen	mulan
7724	Paladiya Priyanka Shantilal	（
7725	Patil Akanksha A	atatil
7726	Patil Nishigandha Shahaji	¢oti
7727	Patil Omkar Sanjay	（2）
7728	Patil Prakash Ananda	Pa
7729	Patil Rutuja Bhanudas	与til
7730	Patil Shilpa Shivaji	－
7731	Patil Sunita Ashok	$\sqrt{\text { toncle }}$
7733	Phonde Vaishnavi Dinkar	Racate
7734	Sarate Prasad Dileep	7
7735	Sardesai Rutuja Rahul	Sawant
7736	Savant Komal Anil	detid
7737	Sharma Ankita Raviraj	avali
7784	Gavali Santosh Vasudev	Shorpade
7785	Ghorpade Sunil Uttam	Lauble
7786	Kamble Ashish Sunil	
7787	Magar Shwetali Subhash	
7788	Mankapure Parveen Mehamud	\％1．
7789	Patil Deepali Mahavir	

7790	Patil Divga Ramesh	Dintin
7791	Pattl Mandar Dnyandeo	Sbism
7792	Pattl Rajat Jaywant	12
7793	Patil Rutuja Bharat	4
7794	Patil Sanyogita Sanjay	cos
7795	Patil Snehal Namdev	- 0101
7796	Powar Mayuri Pandurang	Owal
7797	Sasawade Shivani Bhikaji	Itran
7798	Sawant Swati 1 jit	Lexis
7799	Sharbidre Pranav Sunil	rinut
7800	Shinagare Bharat Shivaji	0
7801	Sonkamble Rohan Raju	Fstand
7802	Sutar Deepak Vishvanath	1
7803	Valunj Amarja Digambar	thatuni
7732	Patil Vijayraj Maruti	paste
7804	Amate Punam Vitthal	Apo
7805	Bendke Mukta Vikas	Bendke
7806	Bhandari Pratiksha Kiran	
7807	Carvalho Alex Motes	
7808	Choudhary Ruchita Pralhadray	Thoud hary
7809	Chougale Priyanka Bajirao	Enagua
7810	Devardekar Unmesha Sunil	
7811	Ekal Prathamesh Shivanand	
7812	Jadhav Digvijay Suresh	
7813	Jangam Shivkrupa Pramod	yenar.
7814	Karalc Shubham Mansing	¢
7815	Kasar Siddhant Shashikant	tous
7816	Kashidkar Kishor Balaso	$\angle \times B$
7817	Kasture Yashdeep Anand	Skad
7818	Kodag Sneha Shivaji	Skodat:
7819	Kumbhar Akshay Dadaso	fumtorar
7820	Marathe Kunal Sandeep	K Marathe
7821	Mullani Kashish Sameer	Mullani
7823	Nikam Sneha Bajarang	- Bikum
7824	Nirmalkar Mayuri Chandrakant	M. Nirmalkor
7825	Patil Afanan Ashafak	MCN
7826	Patil Akanksha Dhanaji	patil
7827	Patil Akshata Ravindra	Atal
7828	Patil Mayuri Tukaram	Mat
7829	Patil Nandini Sunil	1patil
7830	Patil Rushikesh Eknath	Fpar
7831	Patil Saurabh Dinkar	Sad
78.32	Patil Shivali Balaso	Satri
7833	Patil Sourabh Suhas	18
7834	Pawar Pratiksha Ramesh	Leratil
7835	Powar Supriya Madhukar	Traae
7836	Powar Vaishnavi Shankar	Powot

-3:7		\rightarrow
20:3	K.ambing Hhagy ashi Shamrath	
780	Soloale Ahbuheh Dattatay	-
7280	Saminar lowa Netait	'aicl
78.41	Samhpal Propaha, B..lıs.as	Fennaral
78.4?	Shinde Dhamashri Dadase	Fiusdb.
78.4:	Shinde Mamisha Apporalice	Murirde
7 SH 4	Shinde Neha Dattatray	Nelusde
78.45	Shinde Prapahta Ramethandra	Pshinde
78.46	Shinde Rutuja Sunil	Stily.
78.47	Shirale Sayali Rajendra	Envali
78.48	Tandale Purva Shirish	Tardale
78.49	Ubale Ahimhsha Kumar	Esale
78.50	Vadgave Sahshi Shamsundar	carshi.
78.1	Sury vanshi Smital Jaysingrao	cmitul
7852	Bedaghar Gauri Rahul	Geedagkar
7853	Chavan Ramchandra Ashok	(1) haven
7854	Dayama Abhishek Ashok	- Auma
7855	Hiremath Seema Sharanayya	- \#tremath
7856	Jadhav Nihhil Sandeep	Mredrar
7857	Kalguthar ^ahash Rajendra	Afalautbat.
78.58	Kore Jyoti Vinayak	numave
7859	Mane Malhar Uday	Pmane
7860	Patil Omkar Dhanaji	cay
7861	Patil Omkar Janaba	Rinker
7862	Sarnaik Kunal Ketan	Kksama
7863	Shaikh Soufeen Shahmahmad	Shaikr
7864	Shetke Pushkraj Umesh	sretae
7865	Shinde Siddhesh Shivaji	sshinde
7866	Waghmode Kiran Bhimrao	kid.
7867	Yadav Durga Vaijanath	Tyadar
7868	Gharale Karan Manohar	EGhozale
7555	Kanade Priyanka Swatantryakumar	(FD)
7870	Kalugade Sourabh Ravindra	Talgade
7871	Sawant Arati Ashok	Arcount
7872	Shetke Atharav Sanjay	shetfe
7873	Punckar Dipali Anil	spunekor
7874	Kharase Rushikesh Dayanand	R.khawe

QI.
Q. Construction and working of CRT Cathode ray tube is heart of Oscilloscope vacuum tube of Special geometrical shape and converts an electrical signal into visual form.
Electron gun produces beam of electron The electron beam is deflected on its journey in response.
i Glass envelope
It is conical highly evacuated glass housing which Contains vacuum inside and support Various electrodes. the inner walls of CRT between neck and screen are looted with conducting material
Electron gun assembly -
The arrangement of electrodes which produce focussed beam of electrons is called electron gum. It essentially consists of an indirectly heated Cathode, control grid, focussing anode and an accelerating anode.

The cathode consists of nickel cylinder Coated with oxide coating and provide plenty of electrons.
iii Deflection plate assembly -
The deflection of the electron beam is achieved by two sets of deflecting plates placed within the tube beyond the accelerating anode one set is vertical deflection plate and other is Horizontal deflection plates.
iv. Screen - The screen is the inside face of the tube and is coated with fluorescent material such as zinc oxide, zinc onthosilicate, when high velocity electron beam strikes the screen
8. Working of CRT
when Cathode is heated, it emits plenty of electrons, these electrons pass through control grid on their journey. The control grid has negative potential. If negative potential on control grid is high, Few electrons will pass through it and the electron beam strities on the screen will produce a dim spot of light. If negative potential on control grid is reduced. the spot of light will be bright

10

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :
Roll No.
Class
: 7575
: B.SC-II

Signature
of
Supervisor
subject: Sound and Acoustic
Test/ Tutorial No. :
Div. :
Q. 1
2. Construction :-
i) Glass envelope:-

It is a conical highly evacuated glass housing which contains vacuum inside and support the serious electrodes. The miner walls of CRT between neck and screen are coated with a conducting material, called equadag. This coating is electrically connected to the accelerating anode so that electrons which accidently strike the walls ar returned to the anode. This prevents the vials of the tube from charging to a high negative potential.
ii) Electron gun assembly: -

The arrangment of electrodes which produce a focused beam of electrons is called the electron gun. It essentially consist of an indirectly heated cathode, a control grid, a focusing anode and an accelerating anode. The control grid is held
negative potential w.r.t cathode whereas the two anodes are maintained at high positive potential w. r. t. cathode
iii) Deflection plate a ssembly: -

The deflection of the electron beam is achieved by two sets of deflecting plates placed within the tube beyound accelerating andre one set is the vertical deflection plates and the other set is the horizontal deflection plates. The vertical deflection plates are mounted horizontally in the tube The horizontal deflection plates are mounted in the vertical planer.
iii) Screen!

The screen is the inside lace of the tube \& is coated with fluorescent material such as zinc oxide, zinc orthosilicate etc? When high velocity electron beam strikes the screen, a spot of light is produced at the point of impact. The colour of the spot depends upon the nature of fluorescent material.

working :-
When the cathode is heated, it emits plenty of electrons. These electrons pass through control grid on their journey. The control grid has a negative potential. If negative potential on the control gid is high, pew electrons will pass through it and the electron beam striking on the screen will produce a dim spot of light. If the negatives potential on the control grid is reduced, the spot of light will be bright. Thus the intensity of light spot on the screes can be changed by changing the negative potential on the control grid. After leaving the control grid, the electron beam comes under the influence focusing and acceleration anodes. These two anodes are maintained at high positive potential. i. they produce a field which aspen electrostatic lens and it converge the electron mibeam at a point on the screen.

QL
31 Lissajous figures may be used for accurate measurement of freq. In this method, the signal, whose frequency is to be measured, is applied to the Y-platos and lonown standard Pred. signal is applied to the x-plates of the CR. 0

Unknown freq is calculated by the form $\hat{N}_{1} 1984$

$$
f_{y}=\frac{\text { Number of loops cut by horizontal line }}{\text { number of loops cut by vertical line }} \times f
$$

Seat No.
Vivekanand College, Kolhapur (Autonomous).
B. Sc. Part-II (Semester- III) Examination Oct/Nov. 2019

Subject: ASTROPHYSICS
Title of the Paper - Fundamentals of Astrophysics
Subject Code: DSC-1511C1
(Internal Examination)
Day and Date:
Total Marks: 20
Time:
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Figures to the right indicate full marks.
4) Use of Scientific calculator or Log table is allowed.
Q.1. Select most correct alternative
i) The energy associated with an electromagnetic spectrum is given by $E=$ \qquad
A) $\mathrm{h} \gamma$
B) $h \lambda$
C) $h^{2} \gamma$
D) $h^{2} \gamma^{2}$
ii) Wein's displacement law is given by $\lambda_{m 1} T=$ \qquad .
A) constant
B) zero
C) infinite
D) 100
iii) Ptolemy's theory is known as \qquad theory.
A) Geocentric
B) Heliocentric
C) Newton's
D) Einstein
iv) One Lunar cycle consists \qquad days
A) 23.5
B) 26.5
C) 29.5
D) 24.5
v) Terrestrial distances determined by \qquad method.
A) triangular
B) parabolic
C) rectangular
D) cubic

Q.2. Attempt any one

i) What is Doppler shift? State its applications.
ii) Illustrate Copernicus theory.
Q.3. Attempt any one.
i) How moon can be used as a calendar.
ii) Write a note on sun as a calendar.
iii) Explain a surveyor method used for determination of terrestrial distances.

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur

(Autonomous)

Department of Physics

Internal exam

B.Sc.II (Astrophysics) Sem III

Date:- 25/09/2019

Attendance Sheet

Roll No.	Name Of The Student	Signature
7550	Bachche Aomkar Prakash	\%2
7551	Banasavade Omkar Devadas	Bmkar
7552	Bhatale Sachin Sakharam	Shatle
7553	Gole Gaurav Rajaram	fourg
7554	Gurav Rutuja Ravindra	Cricar
7556	Khandekar Pooja Sanjay	Prija
7557	Khatangale Shubhangi Prakash	Finatangle
7558	Khatkale Prashant Prakash	(Fl)
7559	Kudalkar Prajakta Shivaji	Qeruthear
7560	Mali Rohit Maruti	Hpalu
7561	More Shubham Laxman	mome.
7562	Padaval Vaibhav Sadashiv	Yeidaval
7563	Parab Vinayak Sumant	Sparab
7564	Patil Aakansha Bhimarao	Mratil
7565	Patil Akshay Dhanaji	-
7566	Patil Aniket Ananda	dua
7567	Patil Anuja Dattajirao	Apatal
7568	Patil Prajkta Krushnat	Hatil
7569	Patil Shivani Vishnu	Watil
7570	Pawar Aakash Anandrao	Atash
7571	Pirai Omkar Baban	Tinini
7572	Rane Rohit Ramdas	Sane
7573	Salokhe Atish Pundlik	A3
7574	Satbige Shivanand Sanjeev	Eathig
7575	Sayyad Alsaba Javed	Alsaba
7576	Shelar Avinash Sanjay	Ahelar
7852	Bedagkar Gauri Rahul	crues
7853	Chavan Ramchandra Ashok	Havar
7854	Dayama Abhishek Ashok	Apayma.
7855	Hiremath Seema Sharanay ya	\#tuamath
7856	Jadhav Nikhil Sandeep	Sluadhav

Internal Examinar.Dr...Trupti...U: Druntar
" ज्ञान, निज्ञान आणि सुसंस्कार यांताठी भिक्षण प्रतार "
-सिभ्षणमहर्षी खं. कापूली साबुंखे
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)
SUPPLIMENT

Suppliment No. :

Roll No.
7567
Class
B. Sc II

Signature of Supervisor
Subject: Astrophysics
Test/Tutorial No. : Internal Exam
Div.

Q.2)
2) Copernican Heliocentric model.

Copernicus a polish astronomer and mathematician proposed his heliocentric model in 1542 AD. This heliocentric (sun-centered) concept was so radical that copernicus waited until the year of his death to publish his work titled The Revolutions of the Heavenly spheres.

Copernicus had two main reasons for assuming that the sun was the centre,

1. Though the polemic model was good at predicting the predictions of the planets, it was not precise. and over the centuries its predictions got worse and worse.
2. The retrograde motions of the planets could be explained by assuming that the Earth also moves around the Sun.

Thus the sun retrograde loops of the planets
1 (as seen from the Earth occur naturally as a found result of the Earth's motion combined with the motions of the planets. Accordingly, the Sun is at the centre and all planets and distant objects stars revolve in circular orbit as shown. in fig. below.

The invention of the telescope by Galileo in 1609 and observations on orbiting moons as planet Jupiter as well as observed phases of planet just like the Earth's moon supported the heliocentric system.

Q. 3$)$

1) Moon as a Calender \rightarrow

The moon revolve around the earth. from the earth, moon phases are observed. These moon phases were used as a calender. Phases from full moon to no moon and again to full moon is called as lunar cycle or lunar month. The one lunar month consist of 29.5 solar days. when 12 lunar months are completed from the start of spring is called the lunar year. The lunar year consist of $10 \times 29.5=354$ days But the Solar year consist of 365.25 days $\&$ hence the spring of next year will start after 11.25 days. This error may create a serious problem for farmers on the earth. Hence a correction should be applied for this error. The civilizations introduced an extra month after. 3 years in order to match lunar calender \& cylie I seasons.
2) Sun as a Calender \rightarrow

The observations of sun from sunrise to nom to sunset from day to day provide more reliable calender then the observations of moon cycles. The observations of moon cycles. The observations of sue n can be made with the help of shadow of a long stick or stone held vertical on a plane earth Surface. The length of shadow of sunrise $\$$ sunset is maximum while it is minimum at the noon, when the sun is exactly over heal or at its highest position from the horizon The time bet two succesive noons is called as a solar day one Solar day consists of 24 hours.
" ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी किष्रण प्रसार "
-किभणमध्रीं उँ̈, बापूजी साबुंखे
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.
Roll No.

$: 7554$
$: B-S C I$

Signature of
Supervisor
Subject : Astrophysics
Test / Tutorial No.: Internal exam
Div.:

Q.1	
p)	$a>h \nu$
2)	$b>$ constant
(2)	

36 b) helocentric:

2) Copernicus Heliocentric model
copernicus a polish astronomer and mathematician proposed his heliocentric model in 1542 Ah. This heliocentric (sun-centered) cocept was so radical that copernicus waited until the year of his death to publish his work titled. The Revolutions of the Heavenly spheres.

Copernicus had two main reasons for assuming that the sun was the centre.

1. Though the polemic model was good at predicting the predictions of the planets, it was not precise and over the centuries its prediction got corse and worse.

2 . The retrograde motions of the planets could be explained by assuming that the Earth also moves around the sun.

Thus the sun retrograde loops of the planets as seen from the earth occur naturally as a found result of the Earth's motion combined with the motions of the planets Accordingly, the sun is at the centre and all planets and distant objects stars revolve ir circular orbits as shown. in fig. below.

The invention of the telescope by Galileo in 160 g and observations on orbiting moons as planet Jupiter as well as observed phases of planet just like the Earth's moon supported the heliocentric system.
" ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार "
-शिक्षणमहर्षी डॉ. बापूजी साबुंखे
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.
Roll No.

Class
: BscII

Signature of
Supervisor
Subject : Astrophysics
Test ITutorial No.: Internal Exam Div.:

Qu)
2) Sun as a calender \rightarrow

The observations of sun from sunrise to now n to sunset from day to day provide more reliable calender then the observations of moon cycles. The observations of sun can be made with the help of shadow of a long stick or stone held vertical on a plane earth surface. The length of shadow at sunrise and sunset is maximum While it is minimum at the noon, when the sun is exactly over head or at its highest position from the horizon. The time between two successive noons is called as Solar day one solar day consist of 24 hours. The minimum length of shadow at noon depends upon the particular region on the earth and season of the year. For eg. the shadow length at noon is longest at the begining of winter.

1) Moon as a calender \rightarrow

The moon revolve around the earth from the earth, moon phases are observed. These moon phases were used as a calender called as lunar calender. Phases from full moon to no mon and again to full moon is called as lunar cycle- or lunar month. One lunar month consist of 29.5 days. When 12 lunar months are completed from the start of spring it is called the lunar year. The lunar year consist of $12 \times 29.5=354$ days. But, the solar year consist of 365.25 solar days. and hence the spring of next year will start after 11.25 days. This error may create a serious problem for farmers on the earth. Hence a correction should be applied for this error.

