Vivekanand College, Kolhapur. (Autonomous) Department of Physics

Internal Examination Notice 2018-19

Date:30/09/2018

All students of class B.Sc. I, B.Sc. II and B.Sc. III are hereby noticed that the first term internal evaluation examination is scheduled as per following time table.

Nature of question paper:

For B.Sc. I: Long answer question (Any one from given two questions) for 10 marks

Short answer question (Any two from given three questions) for 10 marks

For B.Sc. II: Long answer question (Any one from given two questions) for 10 marks

Short answer question (Any two from given three questions) for 10 marks

For B.Sc. II (Astro): Long answer question (Any one from given two questions) for 10 marks

Short answer question (Any two from given three questions) for 10 marks

For B.Sc. III: Long answer question (Any one from given two questions) for 10 marks

Short answer question (Any two from given three questions) for 10 marks

Internal Evaluation Examination 2018-19. SEM I, SEM III and SEM V Time Table

Sr. No.	Class	Paper	Date	Time
1.	B.Sc. I	Paper I	11/10/2018	11:00 am to 12:00 pm
2.	B.Sc. II	Paper III	11/10/2018	11:00 am to 12:00 pm
3.	B.Sc. II (Astrophysics)	Paper I	12/10/2018	11:00 am to 12:00 pm
4.	B.Sc. III	Paper V (section I)	15/10/2018	11:00 am to 12:00 pm
		Paper V (section II)		01:00 am to 2:00 pm
		Paper VI (section I)	16/10/2018	11:00 am to 12:00 pm
		Paper VI (section II)		01:00 am to 2:00 pm

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19 B.Sc. III Semester V

Subject: Atomic and Molecular Spectra, Astronomy and Astrophysics

Marks: 20 (Each question carry one mark)

Time: 20 min

Q.1 Attempt any ONE

(10)

- Discuss the principle of proton-synchrotron with a special reference to two step acceleration.
- Explain the principle of electron-synchrotron with special reference to two-step acceleration.

Q.2 Attempt any TWO

(10)

- 1. Discuss different methods used to measure nuclear radius.
- 2. What are nucleons? Explain their intrinsic properties.
- 3. What is the shape and size of nucleus?

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur

(Autonomous)

Department of Physics

Internal exam

B.Sc. III Sem V

Attendance Sheet

Roll No.	Name Of The Student	Signature			
	POST03505 VENS 2	15-10-2018	15-10-2018		16-10-2018
8501	Aniket Nandkumar Chile	Achive	Achile	Achile	Achile
8502	Shubham Nandkumar Chodankar	Chiedarye	(hori	(hidan	Chube
8503	Ankita Jayawant Chougule	R	A	A	A
8504	Patil Pramod Dashrath	Daita	Patil	Phalil	ardi
8505	Ankita Ravindra Digraje	A.	(2)	(A)	
8506	Pooja Lagamana Ghulanawar	Gres .	Concla	(page)	pro
8507	Prasad Rajaram Gulavani	- mani	Comme	Chum	- there
8508	Vinayak Baburao Kesarkar	(VC)	W.	(MC)	(VV)
8509	Aishwarya Sanjay Kumbhar	200jay	Ladas	Samon	Sugar
8510	Karale Prajakta Mansing	(A) Masika	1 difficultur	(1) Busket	Missikke
8511	Shamal Vijay Mohite	SM	DM	com.	Jen
8512	Tejaswini Tanaji Musale	Musale	Mulale	Musale	Muscle
8513	Anisa Ajij Nadaf	Anisce	Vhisa-	Anisa-	Anisa
8514	Somesh Krishnat Nerlekar	lexan	Mede	llentur	levi-
8515	Sourabh Sanjay Patil	-tabl	Fall-	البلقا	Sall
8516	Anuja Uday Patil	Apatil	Apatile	Apatil	Apolish
8517	Pranil Yuvraj Patil	Centel	Ratil	Valil	Poli
8518	Pratiraj Sampat Patil	Troumi	1pmm	CHOOK	1 prite
8519	Satish Shivaji Patil	Datis-	Sake	Gatil	Satil
8520	Sheral Shivaji Patil	datal	total	Park	Sall
8521	Shrinath Dhondiram Shinde	Stunde	Shinde	Engle.	Trinde
8522	Kumbhar Swaroop Sunil	水	J. L.	(K	*
8523	Ajit Sadashiv Thorat	Awar	Thorat	Thorat	Awaret
8524	Ruhan Eliyas Ustad	Dechan	Dan	Dana	Dom.
8525	Vaibhay Vasant Yaday	Yyadan	Vyaday	Vyaday	Madax

Internal Examinar....

ESTD JUNE 1964

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। 34049 – शिक्षणमहर्षी डॉ. बापूजी साळुंखे Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor Subject: Atomic & molecular Physics Suppliment No. : Test/Tutorial No.: Internal Exam Roll No. : 8516 Div. B.ScIII, Sem-Class Q.15 Electron - Synchroton + Gastill Vacuum chamber in AC magnetio field. The weight of the magnet is reduced in synchrotron the vacuum chamber inside c. shaped magnet the magnetic focusing is required, the pole faces are constructed to provide maximum field at centre: RF Oscillation Electron orbit Electron Connected (connected to to Vacuum dection gun pump Silver southe

With the help of election gun, elections are injected into the Vaccium chamber with energy range of up to looker After the elections are accelerated to high energy, then the elections may action velocity comparable to that it light. The bare play a very important role. Once the steel bours get Saturated, they he longer about Paraday's law of electromagnetic induction. The electrons gain energy after every revolution. The magnetic field and orbit radius decide the energy of electrons. After the electrons gain maximum energy, radio-frequency oscillator is turned off and larger current is sent through auxiliary coils so that the electrons change their orbit radius due to unitable magnetic field. The trught decreases highly energetic.

Y. Rays when electrons strike the target. The electrons can extrain energy up to 330 MeV by sychrotron action and

7-8 MeV by betation action.

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

– शिक्षणमहर्षी डॉ. बापूजी साळुंखे

34043

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

	SUPPLIMENT	Signature of Supervisor		
	No. : 8522 s : 8. Sc III	Subject : CAT Test / Tutorial Div. :	No.: Internal	cularphy sizs)
Q.1			, e	
1	Proton synchrotron	ann bor	used to all	relevate.
	deutrons, alpha partie	les in an	dition to	proton S.
	Schrous, april per 1	निव इसी	1	
	construction! -	199/10/	7.7	
	The doughout ma	cuum cha	Mar of SI	inchrotron is
	made up at steel	There an	e four aua	drants that
	produce magnetic field	d perpend	icular to v	argum chamber
	The magnetic field in	ncreases a	with time, b	but the
	radius of "+ve" ch	arged par	ticle is mai	ntained constant
		<i>U</i> ,		
	working!-		3:11-	
	Using a linear a			
- 11	generator, the proto	ns lare	anelorated t	owards the
	dognaut chamber	hence,	initially th	ne +ve')
	doghnut chamber	roton can	be accel	lerched up to
	10 MeV. These pa	stides an	e injected	when 117
	magnetic field is so	nall. The	se electro	ns then come
	under the influ oscillator. Morevere	ence of	radio fre	equency course
	oscillator. Moreveve	r, The	magnetic	JUNE S

These electrons then also increased to keep the electrons in circular orbit frequency oscilledox let constant radius. As proton completes its revolution, it almost gains an impulse of I KV tur which increases its energy as well as frequency Hen to maintain the phase stability the freq. of radiolreg. escillator is also increased in order to synchronize it with the freq. of proton. The range up to which protons can be accelerated is higher than the range of electrons electron orbit RF oscillatos injection Target when the protons are accelerated to maximum energy levels, then the radio - freq is distorted, so that the radius of orbit changes. After the motor gets out of its track, it will strike the target frequency of of revolution of positive particles

00

3. The nucleus makes up much less than o.o.l. contains more than 19.9 h of the mass of the atom. The chemical properties of substance are determined by the negatively charged electrons en shrouding the nucleus.

Most nuclei are spherical or ellipsoidal, though some exotic shapes exist. Muclei can vibrate and rotate when struck by other particles. some one unstable and will break apart or change their relative number of protons and neutrons.

।। ज्ञान, विज्ञान आणि सुसंस्कार वांसाठी शिक्षण प्रसार ।। 34047 - शिक्षणमहर्षी डॉ. बापूजी सार्कुखे Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor subject: Atomic and molecular Suppliment No. : Test / Tutorial No .: Internal : 8525 Roll No. B.Sc-III Div. : Class accelerate be used to Construction chamber Vaccum. chamber Working accelerator Such as Vande the protons are daughnut porticle such magnetic electrons then come Oscillatore.

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19 B.Sc. III Semester V

Subject: Mathematical Physics

Marks: 20 (Each question carry one mark)

Time: 20 min

Q.1 Attempt any ONE

(10)

1. Discuss Hamilton variational principle.

2. Derive Hamilton's canonical equation of motion from variational principle.

Q.2 Attempt any TWO

(10)

1. State equivalence of Lagrange's and Newton's equations.

2. Write a note on degree of freedom and constraints.

3. What is relation between H and L?

।) ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी डॉ. बापूजी सार्खुखे 34025 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's EKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor Subject: Mathematical & Statastical Physics Suppliment No. : : 8517 Roll No. Test / Tutorial No. : Div. ; Class BSc-III, Sem- I Q.1> let

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। 34045 - शिक्षणमहर्षी डॉ. बापूजी सार्बुखे Shri Swami Vivekanand Shikshan Sanstha Kolhapur's NAND COLLEGE, KOLHAPUI Signature SUPPLIMENT Supervisor Subject: Mathematical & statistical Suppliment No. : : 8519 Roll No. Class Div. : : BSc. TIL | Sem-V hihely bu, hibah operator 72 in orthogonal curvilinears NUG hibeh

Dividing by axea of s, co	BHC) equal to hely duedus and
taking limit du & du appropri	ther to zero.
(XX) = TOA	he sas due dus
1	12 hs dusdus
- 1 /	d Ashs dAshe dus
hibs (du ₂ du ₃
DEL Dertive	S2 & S3 peopendicular to û and û, at
(VXA)uz = 1	(d(A) h) (d (A) h)
hahi	(du du)
(VXA)u - 1	18 1011
hih	(8 (A.h.) - 8 (A.h.)
17.4 150	
From these three compone curl A = $\nabla \times A = \hat{u}_1$	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
h.h.	(Asha) - d (Azha)
+ 0,	14.L1 - > A.L.17
hsh. d	(A,hi) - > (Asha))
1 03 / 8	(A.b.) - 0 (A.b.)
	(A,h) - d (A,h))
CUS A = 7 x A - 1	Wich Wiche Ush
hiheha	
	ant ans ans
	Achi Acho Ash
	9 14

383°

JUNE 1964

- शिक्षणमहबी डॉ. बापूजी सार्खुखें 🧨 34044 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor Subject: Mathemotrical & statistical Physics Suppliment No. : Test / Tutorial No. : : 8516 Roll No. Class : BSc. TIL Sem Y scalar field in Occs o (u, u, u) a scalar function. The gradient in direction of u, - axis can be written a scalar function on travelling distance ABZ he Du, & in the direction a axadient and y axes are 90 du 30 vectors along the ocapedicely then we can write

1 1931

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19

B.Sc. III Semester V

Subject: Classical mechanics

Marks: 20 (Each question carry one mark)

Time: 20 min

Q.1 Attempt any ONE

(10)

- 1. Obtain an expression for the curl of vector field in orthogonal curvilinear co-ordinates.
- Obtain an expression for the divergence of vector field in orthogonal curvilinear coordinate system. Extend the above formula in spherical polar co-ordinate system.

Q.2 Attempt any TWO

(10)

- Obtain Laplacian operator in orthogonal curvilinear co-ordinate. Extend the result in cylindrical co-ordinates.
- Obtain an expression for gradient of a scalar field in orthogonal curvilinear co-ordinate system.
- 3. Describe spherical polar co-ordinate system.

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

34828

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

(5)

Suppliment No. :

92

Roll No. : 8524

Class : B.Sc-Ⅲ, Sem V

Signature of Supervisor

subject: Classical mechanics

Test / Tutorial No.: Internal Exam

Div :

Lagrange and Newton's equations Equivalence New tonian mechanics the involves vector quantities like force, momenty Complexity in solving the probl avoid Constraints problem These force of Constraints make Solution problem difficult known use Co-ordinates problem impossible. mechanics involve the Scalot potential kinetic energies instead and

Write note on Dagree of Freedom and Constraint Degrees of freedom The number of independent ways in which
a mechanical system can move without violating any constraint which may be imposed on system is called number of degrees of freedom.

It is indicated by least possible number of Co-ordinates to describe system completely.

For when single particle moves freely in space (x, y, z) it has three degrees of freedom. * Constraint - (E) when motion of particle | system of particle is restricted in some way then constraint have been introduced Classification of constraint -@ Sclemnomic 6. Rheonomic (Holonomic Non-holonomic

J1. Hamilton's Cononical equation of motion from Vorina Principle The Hamiltonian of system Specified its terms of € P; 9; - L Canonical Equation Hamilton E 94 96: + 594 96: + 94 dH = 2 P; a t : P6

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

शिक्षणमहर्षी डॉ. बापूजी साळुंखे

34019

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

100

Suppliment No.:

Roll No. : 8523

Class: B.SC-III, Sem V

Signature of Supervisor

subject: classical mechanics

Test/Tutorial No.: Internal Exam

Div.: 2018-19

Q1.

1.

Hamilton Variational principle

Hamilton's principle-

The path actually transversed by Conservative holonomic dynamical system from time to to to is

One over which the line integral of Lagrangian

between limits to and to is Stationary.

J = S L dt = extremum

Let us consider that conservative holonomic dynamical system moves from initial state Pat to final state Q at to.

R' R' R

ESTD STORY 1964

To obtain Hamilton's principle following Conditions must be satisfied must be at P and at to the porticle must be a 3) or=0 at the end Points P and Q are fixed in Space, Acc. to Newton's and law of motion the force Fi acting on ith poeticle of System : From D' Alemberat Principle, : \(\frac{\text{Fi}}{\text{Fi}} = \text{mini}\) \(\frac{\text{mini}}{\text{mini}}\) .. ≥ F; 6r; - ≥ m; r; 6r; - 0 — ②

i=1 i=1 But we have, が、るか: = d (が、るか、) - が、d (るか) : d(risni) = risnit rid (sni) = ~; 6~; + ~; d (6~;)

```
= i; &r; + & 1 (r,2)
 : i, gu = q (i, gu) - g (i,;)
                      The eq D becomes,
i = \frac{1}{1}  \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} 
          m

∴ ≥ Fidri = δω = work done by force Fi during
                                                                                                                                                                                                                                                                                                                                                                      displacement
                     \frac{m}{1 + 2} = \frac{1}{2} = \frac{m_1 \cdot m_1^2}{1 + 2} = \frac{1}{2} = \frac{1}{2
                                       .. Therefore eq 3 becomes,
                                                        :. 6w + 6T = \(\frac{1}{2} \) d (m; \(\frac{1}{2}\)) d \(\frac{1}{2}\);
                                       in Integrating above equ bet limits trand to

to the stand to the stan
                                                                                                                                                                                                                                                                                                                                                                                      = { = d (miri) dri 1366
```


।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

– शिक्षणमहर्षी डॉ. बापूजी साळुंखे

34026

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

ND COLLEGE, KOLHAPUR (AUTONOMOUS)

Signature SUPPLIMENT Supervisor

Suppliment No.:

: 8510

Class

Roll No.

91

1.

: BSC-III Sem V

subject: classical mechanics

Test / Tutorial No.: Internal Exam

Div. :

In newtonian mechanics the ego of motion involves vector quantities like force momentum which increase complexity in solving the problem This approach can't avoid Constraints present in probleme.
These force of constraints if not make solution of problem difficult and they are known use of rectangular even Commonly used Co-ordinates may make Som of problem impossible. These drawbac Lagrangian mechanics where the technique involves scalars like potential and kinetic energies instead vectors

3.	relation between H and L
2.	Note on Degree of Freedom and constraint
>	when motion of particle System of particle 15
	restricted in some way then constraints have been
	introduced
	classification of constraints -
a.	Scheronomic-
	If constraint relation do not explicitly depend
	time e.g. in case of nigig body.
b.	meonomic - IF constraint relation depend explicitly
- (1	on time a bead sliding on moving wire in
	force free space.
c.	Holonomic - Let n. 02- on be the position
	Holonomic - let r, az-in be the position
	condition of all constraints are expressed as
	1 1/11 1/11 1/11
	equations having the form (r, r, r, 1)=0
4.	Mon-holonomic - in the property
	If the condition of constraints are not
	So expressed as non-holonomic Called as non-
	holonomic constraints.
0	
0	
	AND COLLEGE.
	JUNE F JUNE F 1964 F
	7. 1964 S

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19

B.Sc. III Semester V

Subject: Quantum mechanics

Marks: 20 (Each question carry one mark)

Time: 20 min

Q.1. Long Answer question (Attempt any ONE) .

[10]

- Obtain Schrodinger , s time independent equation and time dependent equation
- ii) Explain quantum mechanical treatment of linear harmonic oscillator and show that zero point energy of oscillator is E $0 = \frac{1}{2} \hbar \omega$
- Q.2. Short Answer question (Attempt any TWO).

[10]

- i) Show that [x, Px] = i h give its physical significance
- ii) Give physical significance of wave function
- iii) Obtain Schrodingers equation in spherical polar coordinate system for

hydrogen atom

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी डॉ. बापूजी साळुंखे 34020 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's AND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT of Supervisor Suppliment No. : Subject: Quantum mechanics Roll No. : 8515 Test / Tutorial No.: Internal exam Class : B. SCIL Div. : Q.1 a) Time -independent :- de-Broglie [2m(E-V)]/2 equation Wave equation in Cartesian

64

 $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{4^2} \frac{\partial^2 \psi}{\partial t^2}$ (3) Differentiating eqn (3) twice with respect to t we get $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi e^{-i\omega t} = -\omega^2 \psi$ Substituting this value in eqn 3 $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} - \frac{(\omega^2)}{(u^2)} \psi$ $\frac{\omega^2 - (2\pi\nu)^2}{4\pi^2} = \frac{4\pi^2}{2}$ · 224 + 224 + 224 - (4112) 4 272 + 242 + 222 - (72) 4 $\nabla^2 \Psi + 4\pi^2 \Psi = 0$ (9) Eqn (4) is general eqn and is independent of times substituting this value of I in agn 4 V2 ψ + 4112 [2m(E-V)] Ψ =0 $\nabla^2 \Psi + \left(\frac{3\Pi^2 m}{h^2}\right) (E - V) \Psi = 0$ Also, h = h: $\nabla^2 \psi + \left(\frac{2m}{4^2}\right) (E-V) \psi = 0$ (5) This is the Schrodinger's time - independent wave ean

110	The state of the s
- B "	b) Time -dependent schrodinger's egn
800	The wave function
	$\psi = \psi_0 e^{-i\omega t}$
in the second	
	$\frac{\partial \psi}{\partial t} = -i\omega \psi_0 e^{-i\omega t}$
	Dt.
	24 = -i62112)4
	ðť.
	$\partial \Psi = -i (2\Pi) \left(\frac{E}{h}\right) \Psi$
	D+ (n)
	$F \Psi = -\frac{1}{i} \left(\frac{h}{2\pi} \right) \frac{\partial \Psi}{\partial t}$
	EW = it and i2=-1)
	$E \Psi = i th $
	(ve know
	2210+ 2m 5 2m 12 = 0
	(ve know)
^	substituting value of Ex= it dy in above egn
10	•
	V210 + am it 29 - 2m 1/10 = 12
	$\frac{\nabla^2 \psi + 2m}{\hbar^2} \frac{i\hbar}{\partial t} \frac{\partial \psi}{\partial t} = 0$
	$\nabla^2 \psi - \left(\frac{2m}{h^2}\right) \vee \psi = -\left(\frac{2m}{h^2}\right) \text{ it } \partial \psi$
	(h 2)
	$\frac{-\left(\frac{4\lambda^2}{2m}\right)\nabla^2\varphi + V\psi = \frac{1}{12}\frac{\partial\psi}{\partial t}$
	(2m)
	1-t2 v2+ v) 4= it 04
	(2m) Dt
9	HHY = IEY
	This is the schrodinger's time-dependent
	COLLEGA
	Wave eq State Stat
	1964 S
	Autonomous"

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

34022

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :

Roll No. : 8519

Class : B.Sc_III, Sem- V (18-19)

Signature of Supervisor

Subject: Quantum Mechanics.

Test/Tutorial No.: Internal Exam

Div. :

(2) Consider the action of commutator [x, Px] 4(x,4,2).

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। 34021 – शिक्षणमहर्षी डॉ. बापूजी साळुंखे Shri Swami Vivekanand Shikshan Sanstha Kolhapur's ND COLLEGE, KOLHAI Signature SUPPLIMENT of Supervisor Subject: Quantum Mechanics. Suppliment No. : : 8505 Test/Tutorial No.: Internal Exam Roll No. : B. ScIII, Sem- I (18-19) Class Q.1> @ Time independent Schrödingers Equation that de Borglie wavelength for any particle moving in a Assumed field of force P2 = 2m(E-V) = [2m (E-V)] 1/2 .. De-Borglie wavelenath [2m(E-V)1/2] The wave function 4 is governed by the equation $\psi = 46 e^{-i\omega t}$ wave equation in cartesian co-ordinates is given by, The Now, differentiate eqn 3 twice w.r. to L' we get

	$\frac{\partial^2 \Psi}{\partial t^2} = -\omega^2 \Psi_0 e^{-i\omega t} = -\omega^2 \Psi$
	ət 2
. 6	Putting this value in eq " (1) we get.
	$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} - \frac{(\omega^2)}{(y^2)} \psi$
	where, $W^2 = (2 \pi 2)^2 = 4 \pi^2$ $U^2 = (2 \pi 2)^2 = \lambda^2$
	$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = -\left(\frac{4 \Pi^2}{\lambda^2}\right) \psi$
	$\nabla^2 \Psi + 4 \Pi^2 \Psi = 0 \qquad \boxed{5}$
	Eq. \bigcirc is general λ^2
	Eqn (5) is general eqn & is independent of time.
	By the concept of wave mechanics, de-Borglie wavelength
	$\frac{h}{P} = \frac{h}{[2m(E-v)]^{1/2}} \qquad (from eq^{n} \bigcirc)$
	$P \left[2m(E-V)\right]^{1/2}$
	Putting this value of a in egn & we get,
_	
0	$\nabla^2 \Psi + 4\Pi^2 \left[2m(E-V) \right] \Psi = 0$
	$\nabla^2 \Psi + \left(\frac{8 \Pi^2 m}{h^2}\right) \left(E - V\right) \Psi = 0 \qquad \boxed{\square}$
	Also, $h = h$
	217
	$P^2\psi + \left(\frac{2m}{5^2}\right)(E-V)\psi = 0$
-	
	Egn Trepresents schrödinger's time independent wave egn.
	1 Time dependent schrödinger's equation -
	The wave function , $\Psi = \Psi_0 e^{-i\omega t}$
	DΨ = -iw 40 e-iwt
Ť.	The wave function, $\Psi = \psi_0 e^{-i\omega t}$ $\frac{\partial \Psi}{\partial t} = -i\omega \forall_0 e^{-i\omega t}$ $\frac{\partial \psi}{\partial t} = -i\omega \forall_0 e^{-i\omega t}$ $\frac{\partial \psi}{\partial t} = -i\omega \forall_0 e^{-i\omega t}$
	$\frac{\partial \Psi}{\partial t} = -i(2 \Pi D) \Psi$
	2 E

	$\therefore [x, P_x] \Psi = ik \Psi$
	$[x, Pz] = i\hbar$
Q.2>	5000 K 1
	The variable quantity or oscillatory function characterising, de-
	Borglie wave is called as wave function denoted by symbol 4.
	It is always associated with moving particle. The value of
	wave function associated with moving particle at a particulor
	point x, y, z in space and the time t is related to the finding
-/-	a particle at that time 4,
	i. 4 must be finite for all values of x, y and z.
	ii. I must be single valued i.e. for each set of values of
	x, 4 and z, 4 must have only one value.
1	in 4 must be continuous in all regions, except in those regions
5	where the potential energy (x,y,z) = 0
	iv. The partial decivatives of 4 he sy 24 sy sy sz
	əx əy əz
	be finite, single-valued and continuous at all points, except
s=	at points where the potential V(x) is infinite.
3	V. Y must vanish at infinity i.e. Y=0, as x > 100 y=t 00 or
	$z \rightarrow \pm \infty$
	12
	The state of the s
_687	OCOLLEGE AS
	JUNE OF
	T. Autonomous