Vivekanand College, Kolhapur. (Autonomous) Department of Physics

Internal Examination Notice

2018-19
Date:30/09/2018
All students of class B.Sc. I, B.Sc. II and B.Sc. III are hereby noticed that the first term internal evaluation examination is scheduled as per following time table.
Nature of question paper:
For B.Sc. I : Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given three questions) for 10 marks
For B.Sc. II : Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given three questions) for 10 marks
For B.Sc. II (Astro) : Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given three questions) for 10 marks
For B.Sc. III : Long answer question (Any one from given two questions) for 10 marks
Short answer question (Any two from given three questions) for 10 marks
Internal Evaluation Examination 2018-19.
SEM I, SEM III and SEM V
Time Table

Sr. No.	Class	Paper	Date	Time
1.	B.Sc. I	Paper I	11/10/2018	11:00 am to 12:00 pm
2.	B.Sc. II	Paper III	11/10/2018	11:00 am to 12:00 pm
3.	B.Sc. II (Astrophysics)	Paper I	12/10/2018	11:00 am to 12:00 pm
4.	B.Sc. III	Paper V (section I)	15/10/2018	11:00 am to 12:00 pm
		Paper V (section II)		01:00 am to 2:00 pm
		Paper VI (section I)	16/10/2018	11:00 am to 12:00 pm
		Paper VI (section II)		01:00 am to 2:00 pm

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19 B.Sc. III Semester V
 Subject: Atomic and Molecular Spectra, Astronomy and Astrophysics

Marks: 20 (Each question carry one mark) Time : 20 min
Q. 1 Attempt any ONE

1. Discuss the principle of proton-synchrotron with a special reference to two step acceleration.
2. Explain the principle of electron-synchrotron with special reference to two-step acceleration.

Q. 2 Attempt any TWO

1. Discuss different methods used to measure nuclear radius.
2. What are nucleons? Explain their intrinsic properties.
3. What is the shape and size of nucleus?

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur

(.4utonomous)

Department of Physics

Internal exam

B.Sc. III Sem V

Attendance Sheet

Roll No.	Name Of The Student	Signature			
		15-10-298	15-10-2018	16-10-2018	10-2018
8501	Aniket Nandkumar Chile	Acbije.	Ashile	Achile	Achile
8502	Shubham Nandkumar Chodankar	Chedarya		herdan	udiz
8503	Ankita Jayawant Chougule		\underline{L}		A
8504	Patil Pramod Dashrath	Daith	opratic	Opatil	व1-c
8505	Ankita Ravindra Digraje	(4)	(8)	A	T
8506	Pooja Lagamana Ghulanawar	(racka	praja	(pacis	pry
8507	Prasad Rajaram Gulavani	tasa	Cher		
8508	Vinayak Baburao Kesarkar	VE.	(k).	1c)	
8509	Aishwarya Sanjay Kumbhar	[nf	anjay		
8510	Karale Prajakta Mansing	nejua		- prajki	
8511	Shamal Vijay Mohite	EM	(1)		
8512	Tejaswini Tanaji Musale	usale	Musale	Thusale	usale
8513	Anisa Ajij Nadaf	forisd	thisa	SAnisa	ca
8514	Somesh Krishnat Nerlekar	derkar	plecte	Me.tur	4
8515	Sourabh Sanjay Patil	Fab	Fats		
8516	Anuja Uday Patil	Apatil	Aratile	Apatile	Atcuid
8517	Pranil Yuvraj Patil	critil	Patie	Hilit	Pdel
8518	Pratiraj Sampat Patil	Tprothi	IPrm	+	torich
8519	Satish Shivaji Patil	Satil.	Satil	Patil	patil
8520	Sheral Shivaji Patil	sats.	Pat		
8521	Shrinath Dhondiram Shinde	saude	Shinde	de.	Trade
8522	Kumbhar Swaroop Sunil	京	+		c
8523	Ajit Sadashiv Thorat	Aterat	Therat	horat	
8524	Ruhan Eliyas Ustad	Ctrehan	Eum		
8525	Vaibhav Vasant Yadav	Vyadad	Vyaday	Vyadar	Dyadar

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT $\frac{10}{20}$
Suppliment No: :

Roll No. : 8516
Class
B.ScIII Sem-

Supervisor
Subject: Atomic 9 molecular Physios Test/Tutorial No: : Internal Exam Div. :
Q. 15

Electron - Synchroton,

Construction- Synchrotron alseluses doughten-shaped vacuum chamber in AC magnetic field. The weight of the magnet is reduced in synchrotron the vacum chamber inside c. shaped magnet lithe inagnetic focusing is required, the pole faces are constructed to provide maximum field at centre:

Working -
With the help of electron gun, electrons arc injected into the vacuum chamber with energy range at up to 100 kev After the elections are accelerated to high energy, then the elections may attain velocity comparable to that it light. The bass play a very important role. Once the steel bars get Saturated, they ne longer obey Faraday's law of electromagnetic induction. The electrons gain energy after every revolution. Thu magnetic field and orbit radius decide the energy of electrons. After the elections gain maximum energy, radio-frequeny oscillator is turned off and lager current is sent through auxiliary coils So that the electrons change their orbit radius due to unituble magnetic field. The Aright decreases highly energetic x - Rays when electrons strike the target. The elections can estrin energy up to 330 MeV by sychration action and 7. 8 mev by betatron action.

I। जान, विज्ञान आणि सुसंस्कार यांसाठी किष्षण प्रसार II

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :
Roll No. : 8522
Class : B.SCIII

Signature
of
Supervisor
Subject: (Atomic and molecular phys, Zs)
Test/Tutorial No.: Internal
Div. :
Q. 1

1. Proton synchrotron an be used to accelerate deutrons, doha particles in addition to protons.
construction:-
The doughnut vacuum chamber of synchrotron is made up of steel. There are four quadrants that produce magnetic field perpendicular to vacuum chamber. The magnetic field increases with time, but the radius of "re" charged particle is maintained constant
working:-
Using a linear accelerator such as van de loraff generator, the protons are accelerated towards the doghnut chamber hence, initially the "'re," particle such as proton can be accelerated up to 10 Mev. These particles ave injected when the magnetic field is small. These electrons then come under the influence of radio frequency oscillator. Morevever, the magnetic field NDESTON

These electrons then dino increased to keep the electrons in circular orbit frequency oseillent on rat constant radius. As proton completes its revolution, it almost gains an impulse of I kV/tir which increases its energy as well as frequency. Hen to maintain the phase stability the freq. of radiofreq. oscillator is also increased in order to synchronize it with the freq. of proton. The range up to which protons can be accelerated is higher than the range of electrons

When the protons are accelerated to
10 maximum energy levels, then the radio - freq. is distorted, so that the radius of orbit changes. After the proton gets out- of its track, it will strike the target.
frequency of of revolution of positive particle to be

$$
f=\frac{\left(q B c^{2}\right)(2 \pi r)}{2 \pi\left(k+m_{0} c^{2}\right)\left(2 \pi r_{0}+4 l\right)}
$$

Q. 2
3. The nucleus makes up much less than 0.01%. of the volume of the atom, but typically contains more than 99.9 in of the mass of the atom. The chemical properties of substance are determined by the negatively Charged electrons en shrouding the nucleus. Most nuclei are spherical of ellipsoidal, through some exotic shapes exist. Nude can vibrate and rotate when struck by other particles. Some are unstable and will
(i) break apart or change their relative number f protons and neutrons.

11 जान, विक्षान आणि चुग्रंस्कार बाक्षाठी fिस्रण प्रसार II

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)
SUPPLIMENT
subject: Atomic and molecular
Test/ Tutorial No.: Internal
Div. :
9) proton synchrotron Can be used to accelerate

1. deuterons, alpha potticles, in addition to protons

Construction.
The doughnut vacuum chamber of Synchrotron is made up of steel. There are four quadrants that produce magnetic field perpendicular to vacuum chamber. The magnetic field increases with time, but the radius of tee charged particle is maintained constant

Working -
Using linear accelerator such as vande graff generator, the protons are accelerated towards the doughnut chamber, pence initially the tie particle such as proton can be accelerated up to 10 MeV . These particles are injected when the magnetic field is small. These electrons then come under to influence of Oscillator.

Also increased to kep the electrons in circular orbit constant radius, As proton Completes its revolution, it almost gains an impulse of $\neq k v /$ tum which increases its energy as well as frequency. Hence to maintal. the phase stability the frequency of radiofrequin Ascillatere is also increased in order to synchronise it with freq of proton.

when the protons are accelerated to maximum energy levels then radio Frequency is distored, so that the readily of orbit changer, After the proton get out of its track' it will strike.

Frequency of revolution of positive to be

$$
F=\frac{\left(9 B c^{2}\right)(2 \pi \varepsilon)}{2 \pi\left(K+m_{0} c^{2}\right)\left(2 \pi r_{0}+4 l\right)}
$$

3. The nucleus makes up much less than O. 01 of the volume of atom, but typically Contains more than 99.9λ of the mass of the atom. The chemical properties of substance are determined by the negativity charged e -

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19

B.Sc. III Semester V

Subject: Mathematical Physics
Marks: 20 (Each question carry one mark)
Time : 20 min
Q. 1 Attempt any ONE

1. Discuss Hamilton variational principle.
2. Derive Hamilton's canonical equation of motion from variational principle.

Q. 2 Attempt any TWO

1. State equivalence of Lagrange's and Newton's equations.
2. Write a note on degree of freedom and constraints.
3. What is relation between H and L ?

SUPPLIMENT

Suppliment No. :
Roll No.
Class
: 8517
: BSc-III, Sem- V

Signature
of
Supervisor
Subject: Mathematical \& Statastical physics
Test / Tutórial No. :
Div. :
Q. 1)

1) The curl of a vector in orthocional curvilinear Co-ordin. -ate system

$$
\iint_{s}(\nabla \times \vec{A}) d s=\emptyset \vec{A} d l
$$

Using mean value theoncem for integral

$$
\begin{aligned}
\text { curl } \vec{A} \int_{S} d s & =\oint \vec{A} d l \\
\oint \vec{A} d l & =\oint \vec{A} d l+\oint \vec{A} d l+\oint \vec{A} d l+\oint \vec{A} d l
\end{aligned}
$$

let $\bar{A}=A_{1} \bar{u}_{1}+A_{2} \bar{u}_{2}+A_{3} \vec{u}_{3}$

$$
\begin{aligned}
\oint \bar{A} d l= & A_{2} h_{2} d u_{2}+\left(A_{3} h_{3} d u_{3}+\frac{\partial}{\partial u_{2}} A_{3} h_{3} d u_{2} d u_{3}\right) \\
& +\left(-A_{2} h_{2} d u_{2}-\frac{\partial}{\partial u_{3}} A_{2} h_{2} d u_{2} d u_{3}\right)+\left(-A_{3} h_{3} d u_{3}\right) \\
\Phi \bar{A} d l= & {\left[\frac{\partial A_{3} h_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right] d u_{2} d u_{3} } \\
(\nabla \times \vec{A}) u_{1}= & \frac{\left[\frac{\partial A_{3}}{\partial u_{2}}-\frac{\partial A_{1} h_{2}}{\partial u_{3}}\right] d u_{2} d u_{3}}{h_{2} h_{3} d u_{2} \partial u_{3}} \\
= & 1 \\
& \frac{1}{h_{1} h_{3}}\left(\frac{\partial A_{3} h_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right)
\end{aligned}
$$

similarly by cooing areas S_{2} \& S_{3}

$$
\begin{aligned}
(\nabla \times \vec{A}) u_{2} & =\frac{1}{h_{3} h_{1}}\left(\frac{\partial\left(A_{1} h_{1}\right.}{\partial u_{3}} \frac{\partial\left(A_{3} h_{3}\right)}{\partial u_{1}}\right) \\
\nabla \times \vec{A}) u_{3} & =\frac{1}{h_{1} h_{2}}\left(\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}-\frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)\right)\right.
\end{aligned}
$$

cave $\vec{A}=\nabla \times \vec{A}=\frac{\hat{u}_{1}}{h_{2} h_{3}}\left(\frac{\partial}{\partial u_{2}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial u_{3}}\left(A_{2} h_{2}\right)\right)$

$$
\begin{aligned}
& +\frac{\hat{u}_{2}}{h_{3} h_{1}}\left(\frac{\partial}{\partial u_{3}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}\right)\right) \\
& +\frac{u_{3}}{h_{1} h_{2}}\left(\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}\right)-\frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)\right.
\end{aligned}
$$

$$
\text { curl } \bar{A}=\vec{\nabla} \times \vec{A}=\frac{1}{h_{1} h_{2} b_{3}}\left|\begin{array}{lll}
u_{1} h_{1} & u_{2} h_{2} & u_{3} h_{3} \\
\partial / \partial u_{1} & \partial / \partial u_{2} & \partial / \partial u_{3} \\
A_{1} h_{2} & A_{2} h_{2} & A_{3} h_{3}
\end{array}\right|
$$

Q2 Gradient.
let us consider, $\phi\left(u_{1} u_{2} u_{3}\right)$ a scalar function.

$$
\left(\text { grad } \phi \nu_{u_{1}}=(\nabla \phi) u_{1}=\delta \lim _{u \rightarrow 0} \frac{\phi(B)-\phi(A)}{A B}\right.
$$

where $\phi(B)$ and $\phi(A)$ are the values of scaler function ϕ at B and A separated by distance $A B$ hd W_{1}

$$
A B=h_{1} d u_{1} \quad(g r a d \phi) u_{1}=\rightarrow(\nabla \phi) u_{1}=\lim _{\delta_{u_{1} \rightarrow 0}}\left(\frac{\delta \phi}{h_{1} d u_{1}}\right)
$$

$$
(\nabla \phi)_{u_{1}}=\frac{\partial \phi}{n, \frac{\partial u_{1}}{\partial u_{1}}}
$$

Similarly, the component of gradient of ϕ in the direction $\& \mu_{2} 4 u_{3}$

$$
\begin{aligned}
& \text { (grad } \phi)_{u_{2}}=(D \phi)_{2} \frac{1}{h_{2}} \frac{\partial \phi}{\partial u_{2}} \\
& (\text { grad } \phi) u_{3}=(D \phi) u_{3} \frac{1}{h_{3}} \frac{\partial \phi}{\partial u_{3}}
\end{aligned}
$$

If $\hat{u}_{1} \hat{u}_{2} u_{3}$ are unit:

$$
\begin{aligned}
\text { grad } & =\Delta \phi=\frac{u_{1} \partial \phi}{h_{1}} \partial u_{1} \\
\nabla \phi & =\left(\frac{u_{2}}{h_{1}} \frac{\partial \phi}{\partial u_{2}}+\frac{\hat{u}_{2}}{h_{3}} \frac{\partial}{h_{1}} \frac{\partial u_{1}}{\partial u_{3}} \frac{\partial u_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{u}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}\right) \phi
\end{aligned}
$$

It gives the operator $(\vec{\nabla})$ in orthogonal curvilinear.

$$
\vec{\nabla}=\frac{\hat{u}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\hat{u}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{u}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}
$$

33 Laplacian operator ∇^{2} in ot thegonal cutvilininear. we know that.

$$
\operatorname{div} \vec{A}=\vec{\nabla}, \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u_{1}}\left(\bar{A}_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u_{2}}\left(\bar{A}_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial u_{3}}\left(\bar{A}_{3} h_{1} h_{2}=\right.\right.
$$

let $\vec{A}=\vec{\nabla} . f$, where f is scalar field substituting we

$$
\begin{aligned}
\operatorname{div} \vec{A} & =\vec{\nabla} \overrightarrow{\nabla f}=\nabla^{2} f \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} \vec{\nabla} f_{u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(h_{3} h_{1} \nabla f_{u_{2}}\right)+\frac{\partial}{\partial u_{3}} h_{1} h_{2} \nabla f_{u_{2}}\right. \\
\nabla^{2} f & =\frac{1}{h_{1} h_{2} h_{3}} \int \frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial f}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial u_{3}}\right.
\end{aligned}
$$

The Laplacian operator ∇^{2} in orthogonal curvillinear coordinate is

$$
\nabla^{2}=\frac{1}{h_{1} h_{1} h_{3}}\left[\frac { \partial } { \partial u _ { 1 } } \left(\begin{array}{cc}
h_{2} h_{3} & \left.\frac{\partial}{h_{1}} \frac{\partial u_{1}}{h_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{1}} \frac{\partial}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial}{\partial u_{1}},\right.
\end{array}\right.\right.
$$

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)
SUPPLIMENT

Suppliment No. :
Roll No. : 8519
Class

$$
\text { BSc.III } \operatorname{sem}-\text { V }
$$

Signature
of
Supervisor
Subject: Mathematical \& statistical Test / Tutorial No. :
Div. :

Laplacean operator -
We know that.

$$
\operatorname{div} . \vec{A}=\vec{\nabla} \cdot \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{i}}\left(A_{1} h_{1} h_{3}\right)+\frac{\partial}{\partial u_{2}}\left(A_{2} h_{3} h_{1}\right)+\frac{\partial}{\partial u_{3}}\left(A_{3} h_{1} h_{3}\right)\right]
$$

Let $\vec{A}=\vec{\nabla} \cdot f$; where f is scalar field
substitute we get.

$$
\operatorname{div} \cdot \vec{A}=\vec{\nabla} \cdot \overrightarrow{\vec{b}} f=
$$

$$
\begin{aligned}
\text { div. } A & =\nabla \cdot \overrightarrow{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3}(\vec{\nabla} f) u_{1}\right)+\frac{\partial}{\partial u_{2}} h_{3} h_{1}\left(\vec{\nabla} f h_{u_{2}}\right)+\frac{\partial}{\partial u_{3}} h_{1} h_{2}(\vec{\nabla} f)_{u_{3}}\right] \\
\nabla^{2} f & \left.=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial f}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial u_{3}}\right)\right]
\end{aligned}
$$

The Laplacian operator ∇^{2} in orthogonal curvilinear co-ordinate is given by,

$$
\nabla^{2}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{2}} \frac{\partial}{\partial u_{3}}\right)\right]
$$

Curl of Vector in OCCS -

The curl of a vector may be obtained by using stoke's theorem which is given by,

$$
\iint_{s}(\nabla \times \vec{A}) d s=\oint \vec{A} d d
$$

Using mean value theorem for integral

$$
\operatorname{cur} d \vec{A} \iint_{s} d s=\oint \vec{A} d l \text { or cur } \left\lvert\, \vec{A}=\lim _{d s \rightarrow 0} \frac{\oint \vec{A} d d}{\iint_{s} d s}\right.
$$

To evaluate this consider surface (s.) OBHC of a parallelopiped normal to \widehat{u}_{1} at 0. Refer Fig. 1.6. Boundary of surface denotes closed line.
Then closed line integral can be written as

$$
\oint_{O B H C} \overrightarrow{A d l}=\oint_{O B} \vec{A} d l+\oint_{B H} \vec{A} d l+\oint_{H C} \overrightarrow{A d l}+\oint_{C O} \overrightarrow{A d l}
$$

Let.

$$
\vec{A}=A_{1} \hat{u}_{1}+A_{2} \hat{U}_{2}+A_{3} \widehat{u}_{3}
$$

Evaluating integral, we get.

$$
\begin{aligned}
\oint_{O B M C} A d d= & A_{2} h_{2} d u_{2}+\left(A_{3} h_{3} d u_{3}+\frac{\partial}{\partial u_{2}} A_{3} h_{3} d u_{2} d u_{3}\right) \\
& +\left(-A_{2} h_{2} d u_{2}-\frac{\partial}{\partial u_{3}} A_{2} h_{2} d u_{2} d u_{3}\right)+\left(-A_{3} h_{3} d u_{3}\right) \\
\therefore \oint_{O B H C} \overrightarrow{A d d} & =\left[\frac{\partial A_{3} h_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right] d u_{2} d u_{3}
\end{aligned}
$$

Dividing by area of $s_{1}(O B H C)$ equal to $h_{2} h_{3} d u_{2} d u_{3}$ and faking limit $d u_{2} \& d u_{3}$ approaches to zero.

$$
\begin{aligned}
(\vec{\nabla} \times \vec{A})_{u_{1}} & =\frac{\left[\frac{\partial A_{3} h_{3}}{\partial u_{2}}-\frac{\partial A_{2} A_{2}}{\partial u_{3}}\right] d u_{2} d u_{3}}{h_{2} h_{3} d u_{2} d u_{3}} \\
& =\frac{1}{h_{1} h_{3}}\left(\frac{\partial A_{3} h_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right)
\end{aligned}
$$

Similarly by choosing areas $S_{2} \& S_{3}$ perpendicular to \hat{u}_{2} and \hat{u}_{3} at respectively.

$$
\begin{aligned}
& (\nabla \times \vec{A})_{u_{2}}=\frac{1}{h_{3} h_{1}}\left(\frac{\partial\left(A_{1} h_{1}\right)}{\partial u_{3}}-\frac{\partial\left(A_{3} h_{3}\right)}{\partial u_{1}}\right) \\
& (\nabla \times \vec{A})_{u_{3}}=\frac{1}{h_{1} h_{2}}\left(\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}\right)-\frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)\right)
\end{aligned}
$$

From these three components rorsultant eq n is,

$$
\begin{aligned}
& \text { curl } \vec{A}=\nabla \times \vec{A}= \frac{\hat{u}_{1}}{h_{2} h_{3}}\left(\frac{\partial}{\partial u_{2}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial u_{3}}\left(A_{2} h_{2}\right)\right) \\
&+\frac{\hat{u}_{3}}{h_{3} h_{1}}\left(\frac{\partial}{\partial u_{3}}\left(A_{1} h_{1}\right)-\frac{\partial}{\partial u_{4}}\left(A_{3} h_{3}\right)\right] \\
&+\frac{\hat{u}_{3}}{h_{1} h_{2}}\left(\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}\right)-\frac{\partial}{\partial u_{2}}\left(A, h_{1}\right)\right) \\
&\text { curl } \left.\bar{A}=\nabla \times \vec{A}=\frac{1}{h_{1} h_{2} h_{3}} \left\lvert\, \begin{array}{lll}
\hat{u}_{1} h_{1} & \hat{u}_{2} h_{2} & \hat{u}_{3} h_{3} \\
\frac{\partial}{\partial u_{7}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
A_{1} h_{1} & A_{2} h_{2} & A_{3} h_{2}
\end{array}\right.\right]
\end{aligned}
$$

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)
SUPPLIMENT

Supplement No. :
Signature
of
Supervisor
subject: Mathematical \& statistical Physics
Test / Tutorial No. :
Div. :

Gradient of scalar field in Orcs -
Let us consider $\phi\left(u_{1}, u_{1}, u_{3}\right)$ a scalar function. The gradient of the scalar field ϕ in direction of u_{1} - axis can be written as.

$$
(\operatorname{grad} \phi)_{u_{1}}=(\nabla \phi)_{u_{1}}=\lim _{\delta u_{1} \rightarrow 0} \frac{\phi(B)-\phi(A)}{A B}
$$

where $\phi(B)$ and $\phi(A)$ are values of scalar function ϕ at B and B seperated by distance $A B=\hbar$.dur. The quantity $[\phi(B)-\phi(B)]$ may be taken as increase in ϕ on traveling distance $A B=$ h. Au, This may be written as do for the limiting case where $\delta u, \rightarrow 0$

$$
\begin{gathered}
(\operatorname{grad} \phi)_{u_{1}}=(\nabla \phi)_{u_{1}}=\lim _{\delta u_{1} \rightarrow 0}\left[\frac{\delta \phi}{h_{1} d u_{1}}\right] \\
(\nabla \phi)_{u_{1}}=\frac{1}{h_{2} \frac{\partial \phi}{\partial u_{1}}}
\end{gathered}
$$

Similarly, the component of gradient of ϕ in the direction u_{0} and u_{3} axes are.

$$
\begin{aligned}
& (\operatorname{grad} \phi)_{u_{2}}=(\nabla \phi)_{u_{2}}=\frac{1}{h_{2}} \frac{\partial \phi}{\partial u_{2}} \\
& (\operatorname{grad} \phi)_{u_{3}}=(\nabla \phi)_{u_{3}}=\frac{1}{h_{3}} \frac{\partial \phi}{\partial u_{3}}
\end{aligned}
$$

If \hat{u}_{1}, \hat{u}_{2}, \hat{u}_{3} are unit vectors along the u_{1}, u_{2}, u_{3} directions respectively then we can write,

$$
\begin{aligned}
& \text { or } \\
& \nabla \phi=\left[\frac{\hat{u}_{1}}{h_{1}} \partial u_{1}+\frac{\hat{u}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\widehat{u}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}\right] \varnothing
\end{aligned}
$$

It gives the del operator ($\bar{\nabla}$) in orthogonal curvilinear co-ordinates.

$$
\overrightarrow{\boldsymbol{r}}=\frac{\hat{u}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\widehat{u_{2}}}{\hat{h}_{2}} \frac{\gamma}{\partial u_{2}}+\frac{\widehat{u}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}
$$

Laplacean - operator in OCCS-
We know that;

$$
\text { div. } \vec{A}=\vec{\nabla} \cdot \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u_{2}}\left(A_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial u_{3}}\left(A_{3} h_{1} h_{2}\right)\right]
$$

Let. $A=\vec{\nabla} P$ where f is scalar field. div: $\vec{A} \Rightarrow \vec{r} \cdot \vec{\nabla} f=v^{2} f$

Curl of Vector -
The curl of vector function obtained by stoke's theorem,

$$
\int_{s}(\nabla \times \vec{A}) d s=\emptyset \vec{A} d l
$$

Using mean value -

$$
\operatorname{curl} \vec{A} \iint_{s} d s=\oint \vec{A} d l \text { or curl } \vec{A}=\lim _{\delta s \rightarrow 0} \frac{\oint \vec{A} d s}{\int s d s}
$$

To evaluate this consider surface (s_{1}) OBHC

$$
\oint_{O B H C} \vec{A} d l=\oint_{O B} \vec{A} d l+\oint_{B H} \vec{A} d d+\oint_{H C} \vec{A} d l+\oint_{C O} \vec{A} d l
$$

Let,

Evaluating integral.

$$
\begin{aligned}
& \text { Evaluating integral. } \\
& \oint_{\text {obuc }} \overrightarrow{A d d}= A_{2} h_{2} d u_{2}+\left(A_{3} h_{3} d u_{3}+\frac{\gamma}{\partial u_{2}} A_{3} h_{3} d u_{1} d u_{3}\right)+\left(-A_{2} h_{2} d u_{2}-\frac{\partial}{\partial u_{3}} A_{2} h_{2}\right. \\
&\left.d u_{1} d u_{3}\right)+\left(-A_{3} h_{3} d u_{3}\right) \\
& \oint_{\text {OBB }} \overrightarrow{A d l}= {\left[\frac{\partial A_{6} b_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right] d u_{2} d u_{3} . }
\end{aligned}
$$

Dividing by area of $s_{1}(O B H C)$ equal to $h_{2} b_{3} d u_{2} d u_{s}$ and taking limit $d v_{2}$ and u_{3} approaches to zero, then component of curl \vec{A} along \hat{u}_{1},

$$
\begin{aligned}
&(\nabla \times \vec{A})_{u_{1}}=\left(\frac{\partial A_{3} h_{3}}{\partial u_{2}} \frac{\partial A_{3} A_{2}}{\partial u_{3}}\right) d u_{2} d u_{3} \\
& h_{2} h_{3} d u_{2} d u_{3} \\
&=\frac{1}{h_{1} h_{0}\left(\frac{\partial A_{3} A_{3}}{\partial u_{2}}-\frac{\partial A_{2} h_{2}}{\partial u_{3}}\right)}
\end{aligned}
$$

similarly by choosing areas S_{2} and S_{3} perpendicular to \vec{v}_{2} and \hat{u}_{3} at O respectively, we find component of curl \vec{A} atoning \vec{u}_{2} and \hat{u}_{3}. This leads to the result

$$
\begin{aligned}
(\nabla \times \vec{A})_{u_{2}} & =\frac{1}{h_{3} h_{1}}\left[\frac{\partial A_{1} h_{1}}{\partial u_{3}}-\frac{\partial\left(A_{3} h_{3}\right)}{\partial u_{1}}\right] \\
(\nabla \times \vec{A})_{u_{3}} & =\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial u_{1}}\left(A_{2} h_{2}\right) \frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)\right]
\end{aligned}
$$

From these three components, resultant equation for curl of rector field can be written as

$$
\begin{aligned}
\text { creator field } \vec{A}=\nabla \times \vec{A}= & \frac{\hat{u}_{1}}{h_{2} h_{3}}\left[\frac{\partial}{\partial u_{2}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial u_{0}}\left(A_{2} h_{2}\right)\right] \\
& +\frac{\widehat{u_{2}}}{h_{3} h_{1}}\left[\frac{\partial}{\partial u_{3}}\left(A_{1} h_{1}\right)-\frac{\partial}{\partial u_{1}}\left(A_{3} h_{3}\right)\right] \\
& +\frac{\widehat{u_{3}}}{h_{1} h_{2}}\left(\frac{\partial}{\partial u_{1}}\left(A_{2} h_{1}\right)-\frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)\right]
\end{aligned}
$$

$$
\text { Cur } \left.\left|\vec{A}=\nabla \times \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\right| \begin{array}{ccc}
\hat{u}_{1} h_{1} & \hat{u}_{2} h_{2} & \hat{u}_{3} h_{3} \\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
& A_{1} h_{1} & A_{2} h_{2} \\
A_{3} h_{3}
\end{array} \right\rvert\,
$$

This is the required result.

Vivekananda College Kolhapur (Autonomous). Department of Physics: Internal examination 2018-19
 B.Sc. III Semester V
 Subject: Classical mechanies
 Marks: 20 (Each question carry one mark)
 Time : 20 min

Q. 1 Attempt any ONE

1. Obtain an expression for the curl of vector fiedd in orthogonal curvilinear co-ordinates
2. Obtain an expression for the divergence of vector field in orthogonal curvilinear co ordinate system. Fxtend the above formula in spherical polar co-ordinate system

Q. 2 Attempt any TWO

1. Obtain Laplacian operator in orthogonal eurvilinear co-ordinate. Extend the result in cylindrical co-ordinates.
2. Obtain an expression for gradient of a scalar field in orthogonal curvilinear co-ordinate system.
3. Describe spherical polar co-ordinate system.

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)
SUPPLIMENT

Suppliment No. :

Signature
of
Supervisor
Subject: Classical mechanics
Test/Tutorial No.: Internal Exam Div. :

92

1. Equivalence of Lagrange and Newton's equation 5
\Rightarrow In Newtonian mechanics the eq n of motion involves vector quantities like force, momentum, which increase complexity in solving the probleThis approach cant avoid constraints present in problem.

These force of constraints, if not known make solution of problem difficult and even if they are known, use of rectangular $/$ other commonly used coordinates may make son of problem impossible. These drawback removed in Lagrangian mechanics, where the technique involve scalat like potential and kinetic energies instead of vectors.
2. Write note on Degree of Freedom and Constraint Degrees of Freedom -

The number of independent ways in which a mechanical system can move without violating any constraint which may be imposed on system is called number of degrees of freedom.

It is indicated by least possible number of coordinates to describe system completely Fg - when single particle moves freely in space (x, y, z) it has three degrees of freedom

* Constraint -
when motion "i of particle 1 system of particle is restricted in some way then constraint have been introduredat
Classification of constraint -
a Scleronomic
(b). Rheonomic
(c). Holonomic
(d) Non-holonomic

Hamilton's Canonical equation of motion from Varional Principle

The Hamiltonian of system Specified its total energy i.e kinetic energy and potential energy in terms. of

$$
\begin{aligned}
\therefore \quad L & =T-V \\
\therefore H & =\sum P_{i} \dot{q}_{i}-L \\
H & =m \dot{q}_{i} q_{i}-(T-V) \\
& =2 \cdot\left(\frac{1}{2} m_{q}^{2} q^{2}\right)-T(T-V) \\
& =2 T 1+V \\
\therefore H & =T+V V^{2}+T_{i}
\end{aligned}
$$

Hamilton Canonical Equation

$$
\begin{aligned}
& \therefore H=H\left(q_{i}, P_{i}, t\right) \\
& \therefore \quad d H=\sum \frac{\partial H}{\partial q_{i}} d q_{i}+\sum \frac{\partial H}{\partial P_{i}} d P_{i}+\frac{\partial H}{\partial t} d t
\end{aligned}
$$

SUPPLIMENT

Suppliment No. :
Roll No. : 8523
Class : B. SC- H, Sem V

Signature
of
Supervisor
Subject: Classical mechanic 5
Test/Tutorial No. : Internal Exam
Div.: 2018-19

Qt.

1. Hamilton Variational prinitples,
\Rightarrow Hamilton's principle -
The path actually transviersed by Conservative holonomic dynamical system from time t_{1} to th is one over which the line internat of Lagrangian between limits t_{1} and $t_{\text {tain stationary. }}$

Let us consider that Conservative holonomic dynamical system moves from initial state P at t, to final state Q at t_{2}.

To obtain Hamilton's principle following Conditions must be satisfied

1) $\delta t=0$ at the end Points, i.e at t_{1} the Paratrice must be at P and at t_{2} the particle must bed
2) $\delta r=0$ at the end Points P and Q are Fixed in space,

Acc. to Newton's $2^{\text {nd }}$ law of motion the fore F_{i} acting on i th particle of system

$$
\therefore \quad F_{i}=m_{i} \ddot{\gamma}_{i}
$$

\therefore From D'Alembert Principle,

$$
\begin{align*}
& \therefore \sum_{i=1}^{n}\left(F_{i}-m_{i} \ddot{r}_{i}\right) \delta r_{i}=0 \\
& \therefore \sum_{i=1}^{n} F_{i} \delta r_{i}-\sum_{i=1}^{n} m_{i} \ddot{r}_{i} \delta r_{i}=0 \tag{2}
\end{align*}
$$

But we have,

$$
\begin{aligned}
\dot{r}_{i} \delta r_{i} & =\frac{d}{d t}\left(\dot{r}_{i} \delta r_{i}\right)-\dot{r}_{i} \frac{d}{d t}\left(\delta r_{i}\right) \\
\therefore \frac{d}{d t}\left(\dot{r}_{i} \delta r_{i}\right) & =\ddot{r}_{i} \delta r_{i}+\dot{r}_{i} \frac{d}{d t}\left(\delta r_{i}\right) \\
& =\dot{r}_{i} \delta r_{i}+\dot{r}_{i} \frac{d}{d t}\left(\delta r_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\dot{r}_{i} \delta r_{i}+\delta \frac{1}{2}\left(\dot{r}_{i}^{2}\right) \\
\therefore \dot{r}_{i} \delta r_{i} & =\frac{d}{d t}\left(\dot{r}_{i} \delta r_{i}\right)-\delta \frac{1}{2}\left(\dot{r}_{i}^{2}\right)
\end{aligned}
$$

The eq (2) becomes,

$$
\begin{aligned}
& \therefore \sum_{i=1}^{n} F_{i} \delta r_{i}-\left\{\sum_{i=1}^{n} m_{i}\left[\frac{d}{d t}\left(\dot{r}_{i} \delta r_{i}\right)-\delta \frac{1}{2}\left(\dot{r}_{i}{ }^{2}\right)\right]=0\right. \\
& \therefore \sum_{i=1}^{n} F_{i} \delta r_{i}+\delta \sum_{i=1}^{n} \frac{1}{2} m_{i} \dot{r}_{i}^{2}=\sum_{i=1}^{n} \frac{d}{d t}\left(m_{i} \dot{r}_{i}\right) \delta r_{i}
\end{aligned}
$$

$\therefore \sum_{i=1}^{n} F_{i} \delta r_{i}=\delta \omega=$ work done by force F_{i} during $i=1 \quad$ displacement

$$
\therefore \sum_{i=1}^{n} \frac{1}{2} m_{i} \ddot{r}_{i}^{2}=T=\frac{1}{\text { nance }} \text { of system }
$$

\therefore Therefore eg (3) becomes,

$$
\therefore \delta \omega+\delta T=\sum_{i} \frac{d}{d t}\left(m_{i} \dot{r}_{i}\right) \delta r_{i}
$$

\therefore Integrating above eq^{n} bet limits t_{1} and t_{2}

$$
\begin{aligned}
\therefore \int_{t_{1}}^{t_{2}}(\delta \omega+\delta t) d t & =\int_{t_{1}}^{t_{2}} \sum_{i=1}^{n} \frac{d}{d t}\left(m_{i} \dot{r}_{i}\right) \delta r_{i} d t \\
& =\int_{t_{1}}^{t_{2}} \sum_{i=1}^{n} d\left(m_{i} \dot{r}_{i}\right) \delta r_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\sum_{i=1}^{n}\left(m_{i} \dot{r}_{i}\right) \delta r_{i}\right]_{p}^{Q} \\
& =0
\end{aligned}
$$

Since $\delta_{r_{i}}=0$ at the end points P and O

$$
\therefore \int_{t_{1}}^{t_{2}}(\delta \omega+\delta T) d t=0-(4)
$$

But for conservative system, we have $\delta w=-\delta v$ δV is change in potential energy.

$$
\begin{aligned}
& \therefore \int_{t_{1}}^{t_{2}}(-\delta v+\delta T) d t=0 \\
& \therefore \delta \int_{t_{1}}^{t_{2}}(T+\infty) d t=0 \\
& \therefore \delta J=\delta \int_{t_{1}}^{4_{0}} L d t=0 \\
& \therefore J=\int_{t_{1}}^{t_{2}} L d t=\text { Extremum }
\end{aligned}
$$

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :
Roll No. : 8510
Class : BSC-III $\operatorname{sem} V$

Signature
of
Supervisor
Subject: Classical mechanics
Test/Tutorial No.: Internal Exam Div. :

QI.
In newtonian mechanics the eq n of motion involves vector quantities like force, momentum which increase complexity in solving the problem, This approach cant avoid Constraints present in probleme.

These forme of constraints if not known make solution on of problem difficult and even if they are known, use of rectangular, and other commonly used co-ordinates may mate sols of problem impossible. These drusbad removed in lagrangian mechanics
where the technique involves scaler like potential and kinetic energies instead of vectors
3. relation between H and L
2. Note on Degree of freedom and constraint
\Rightarrow when motion of particle/ system of particle is restricted in some way then constraints have been introduced
classification of constraints -
a. Scleronomic.

If constraint relation do not explicitly depend time e.g. in case of rigid body.
b. rheonomic - If constraint relation depend explicit y on time a bead sliding on moving wire in force free space.
c. Holonomic - Let mar or r_{2} be the position coordinates of system and t denotes time then condition of all constraints are expressed as equations having the form $\left(r_{1}, r_{2}, \ldots, r_{n}, t\right)=0$
d. Non-holonomic -

If the condition of Constraints are nat so expressed as non-holonomic called as nonholonomic constraints.
Vivekananda College Kolhapur (Autonomous).Department of Physics: Internal examination 2018-19
B.Sc. III Semester V
Subject: Quantum mechanics
Marks: 20 (Fach question cart) one mark) Time : 20 min
Q.1. Long Answer question (Atfempt any ONE) .|10|
i) Obtain Schrodinger, s time independent equation and time dependent equation
ii) Explain quantum mechanical treatment of linear harmonic oscillator and show that zero point energy of oscillator is E $0=1 / 2 \mathrm{~h} \omega$

Q.2. Short Answer question (Aftempt any TWO).

i) Show that $[\mathrm{x}, \mathrm{Px}]=\mathrm{i} h$ give its physical significance
ii) Give physical significance of wave function
iii) Obtain Schrodingers equation in spherical polar coordinate system for hydrogen atom

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ॥

- शिक्षणमहर्षी डॉ. बापूजी साबुंखे

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.
Roll No.
: 8515

Class
B.ScIII

Signature of
Supervisor
Subject: Quantum mechanics
Test/Tutorial No. : Internal exam
Div. :
Q. 1
i) a) Time -independent/schicodinger's equation: -

1) Total energy is igiven by

$$
\begin{align*}
& E=\frac{P^{2}}{2 m}+V \\
& P^{2}=2 m(E-V) \\
& P=[2 m(E-V)]^{1 / 2} \tag{1}
\end{align*}
$$

\therefore de-Broglie wavelength $\lambda=\frac{h}{p}=h$

$$
[2 m(E-V)]^{1 / 2}
$$

2) He assumed that the cuave functh 4 is governed by the equation

$$
\begin{equation*}
\psi=\omega_{0} e^{-i \omega t} \tag{2}
\end{equation*}
$$

Wave equation in cartesian co-ordinate sogiven
by \qquad

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{u^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \tag{3}
\end{equation*}
$$

Differentiating eq n (3) twice with respect to t we get

$$
\left.\frac{\partial^{2} \psi}{\partial t^{2}}=-\omega^{2} \psi_{0} e^{-i \omega t}=-\omega\right)^{2} \varphi
$$

Substituting this value in eq ${ }^{n} 3$

$$
\begin{array}{r}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=-\left(\frac{\omega^{2}}{u^{2}}\right) \psi \\
\frac{\omega^{2}}{u^{2}}=\frac{(2 \pi \nu)^{2}}{(\nu \lambda)^{2}}=\frac{4 \pi^{2}}{\lambda^{2}} \\
\therefore \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=-\left(\frac{4 \pi^{2}}{\lambda^{2}}\right) \psi \\
\nabla^{2} \psi+\frac{4 \pi^{2}}{\lambda^{2}} \psi=0 \tag{s}
\end{array}
$$

Eq (4) is general eq n and is independent of time Substituting this value of λ in eq n

$$
\begin{aligned}
& \nabla^{2} \psi+\frac{4 \pi^{2}[2 m(E-V)] \psi}{h^{2}}=0 \\
& \nabla^{2} \psi+\left(\frac{8 \pi^{2} m}{h^{2}}\right)(E-V) \psi=0
\end{aligned}
$$

Also, $\hbar^{-}=\frac{h}{2 \pi}$

$$
\therefore \nabla^{2} u+\left(\frac{2 m}{\hbar^{2}}\right)(E-V) u=0 \quad-(5)
$$

This is the schrodinger's time -independent wave eq n
b) Time-dependent schrodinger's eqn the wave functn

$$
\begin{aligned}
& \psi=\psi_{0} e^{-i \omega t} \\
& \frac{\partial \psi}{\partial t}=-i \omega \psi_{0} e^{-i \omega t} \\
& \frac{\partial \psi}{\partial t}=-i(2 \pi \nu) \psi \\
& \frac{\partial \psi}{\partial t}=-i(2 \pi)\left(\frac{E}{h}\right) \psi \\
& E \psi=-\frac{1}{i}\left(\frac{h}{2 \pi}\right) \frac{\partial \psi}{\partial t} \\
& E \psi=i \hbar \frac{\partial \psi}{\partial t}\left(\frac{1}{2} \hbar\right. \\
& \text { we know } \\
& \nabla^{2} \psi+\frac{2 m}{\hbar^{2}}
\end{aligned}
$$

substituting value of $\dot{E} \mu=$ it $\partial \psi$ in above eq^{n}

$$
\begin{array}{r}
\nabla^{2} \psi+\frac{2 m}{\hbar^{2}} i \hbar \frac{\partial \psi}{\partial t}-\frac{2 m}{\hbar^{2}} v \psi=0 \\
\nabla^{2} \psi-\left(\frac{2 m}{\hbar^{2}}\right) v_{\psi}=-\left(\frac{2 m}{\hbar^{2}}\right) \text { i } \frac{\partial \psi}{\partial t}
\end{array}
$$

$$
\text { or } \quad-\left(\frac{\hbar^{2}}{2 m}\right) \nabla^{2} \varphi+v \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

$$
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+v\right) \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

$$
H \psi=E \psi
$$

This is the schrodinger's time-dependent wave en

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No. :
Roll No.
Class
8519
B.Sc III , sem - V

Signature
Supervisor
subject: Quantum Mechanics. Test/Tutorial No.: Internal Exam Div. :
Q. 2)

1) Consider the action of commutator $\left[x, P_{x}\right]$ on wave $f h$ $\psi(x, y, z)$.

$$
[x, P x] \psi=[x,-1 / \partial \omega / 2 x] \psi
$$

$$
\begin{aligned}
& -i \hbar\left\{x \frac{\partial}{\partial x}-\frac{\partial}{\partial x} x\right) \psi \\
= & -i \hbar\left\{x \frac{\partial \psi}{\partial x}-\frac{\partial}{\partial x}(x \psi)\right\} \\
= & -i \hbar\left\{x \cdot \frac{\partial \psi}{\partial x}-\frac{x}{\partial \psi}-\psi\right\} \\
= & -i \hbar(-\psi) \\
= & i \hbar \psi
\end{aligned}
$$

$$
\left[x, P_{x}\right] \psi=i \hbar \psi
$$

$$
\therefore\left[x, P_{x}\right]=i k .
$$

Q 1)

1) (a) Time independent schrodinger's equation \rightarrow

The de-Borglie wavelength for any particle moving in a field of force with potential energy v. Therefore, total energy is given by,

$$
\begin{align*}
E & =K E+P E \\
& =\frac{1}{2} m V^{2}+V \\
& =\frac{1}{2} \frac{m^{2} V^{2}+V}{m} \\
E & =\frac{P^{2}}{2 m}+V \\
P^{2} & =2 m(E-V) \\
P & =[2 m(E-V)]^{1 / 2} \tag{1}
\end{align*}
$$

De-Borglie wavelength $\lambda=\frac{h}{P}=\frac{h}{[2 m(E-V)]^{1 / 2}}$
The wave function ψ is governed by the equation

$$
\psi=\psi_{0} e^{-i \omega t}
$$

The wave equation in cartesian co-ordinates is giver by,

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{u^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \tag{4}
\end{equation*}
$$

Now, differentiate eq. (3) twice w.r. to 't' we get,

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=-\omega^{2} \psi_{0} e^{-j \omega t}=-\omega^{2} \psi
$$

Putting this value in eqn (4) we get,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=-\left(\frac{-\omega^{2}}{u^{2}}\right) \psi
$$

where, $\frac{\omega^{2}}{u^{2}}=\frac{(2 \pi \nu)^{2}}{(\nu \lambda)^{2}}=\frac{4 \pi^{2}}{\lambda^{2}}$

$$
\therefore \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial \psi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\left(\frac{4 \pi^{2}}{\lambda^{2}}\right) \psi
$$

$$
\begin{equation*}
\nabla^{2} \psi+\frac{4 \Pi^{2}}{\lambda^{2}} \psi=0 \tag{5}
\end{equation*}
$$

Eq ${ }^{n}$ (5) is general eqr \& is independent of time.
By the concept of wave -mechanics de-Borglie wavelength

$$
\lambda=\frac{h}{P}=\frac{h}{[2 m(E-v)]^{1 / 2}} \quad \text { (from egr (1)) }
$$

Putting this value of λ in eqn (5) weget,

$$
\begin{aligned}
& \nabla^{2} \psi+\frac{4 \pi^{2}[2 m(E-V)] \psi}{h^{2}}=0 \\
& \nabla^{2} \psi+\left(\frac{8 \pi^{2} m}{h^{2}}\right)(E V) \psi=0
\end{aligned}
$$

Also, $\quad h=\frac{h}{2 \Pi}$

$$
\begin{equation*}
\therefore \nabla^{2} \psi+\left(\frac{2 m}{h^{2}}\right)(E-v) \times \psi^{2}=0 \tag{7}
\end{equation*}
$$

Eqn (7) represents schrodinger's time independent wave eqr.

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Supplement No. :
Roll No.
: 8505
Class
: B.scIII, Sem- I

Signature
of
Supervisor
Subject: Quantum Mechanics.
Test/Tutorial No.: Internal Exam
Div. :
Q.1)

1) (a) Time independent Schrödingerds Equation -

Assumed that de-Borglie wavelength for any particle mowing in a field of force with potential energy vivitherefore total Energy is given by,

$$
\begin{align*}
E & =k E+D E \\
& =\frac{1}{2} m v+v \\
& =\frac{1}{2} \frac{m^{2} v^{2}}{m} \\
E & =\frac{P^{2}}{2 m}+v \\
P^{2} & =2 m(E-v) \tag{1}\\
P & =[2 m(E-v)]^{1 / 2}
\end{align*}
$$

\therefore De-Borglie wavelength $\lambda=\frac{h}{P}=\frac{h}{\left[2 m(E+v)^{1 / 2}\right]}$
The wave function ψ is governed by the equation

$$
\begin{equation*}
\psi=46 e^{-i \omega t} \tag{3}
\end{equation*}
$$

The wave equation in cartesian co-ordinates is given by,

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial 2 \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{u^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \tag{4}
\end{equation*}
$$

Now, differentiate eqn (3) twice w.r. to 't 'we gel,

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=-\omega^{2} \psi_{0} e^{-i \omega t}=-\omega^{2} \psi
$$

Putting this value in eq^{n} (4) we get,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=-\left(\frac{\omega^{2}}{u^{2}}\right) \psi
$$

where, $\frac{\omega^{2}}{u^{2}}=\frac{(2 \pi \nu)^{2}}{(\nu \lambda)^{2}}=\frac{4 \pi^{2}}{\lambda^{2}}$

$$
\begin{align*}
& \therefore \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=-\left(\frac{4 \pi^{2}}{\lambda^{2}}\right) \psi \\
& \therefore \nabla^{2} \psi+4 \pi^{2} \psi=0 \tag{5}
\end{align*}
$$

Eqn (5) is general eq \& is independent of time.
By the concept of wave mechanics, de-Borglie wavelength

$$
\lambda=\frac{h}{P}=\frac{h}{[2 m(E-v)]^{1 / 2}} \quad \text { (from eq }{ }^{n} \text { (1)) }
$$

Putting this value of λ in egn (5) we get,

$$
\begin{align*}
& \nabla^{2} \psi+4 \pi^{2}[2 m(E-V)] \psi \\
& \nabla^{2} \psi+\left(\frac{8 \pi^{2} m}{h^{2}}\right)(E-V) \psi=0 \tag{6}
\end{align*}
$$

Also, $\quad h=\frac{h}{2 \pi}$

$$
\begin{equation*}
\therefore \nabla^{2} \psi+\left(\frac{2 m}{\hbar^{2}}\right)(E-v) \psi=0 \tag{7}
\end{equation*}
$$

Eq ${ }^{n}$ (7) represents schrodinger's time independent wave eqn.
(b) Time dependent schrodinger's equation \rightarrow

The wave function, $\psi=\psi_{0} e^{-i \omega t}$

$$
\begin{aligned}
& \frac{\partial \psi}{\partial t}=-i \omega \psi_{0} e^{-i \omega t} \\
& \frac{\partial \psi}{\partial t}=-i(2 \pi \nu) \psi
\end{aligned}
$$

$$
\begin{align*}
& \partial \psi=-i(2 \pi)\left(\frac{E}{h}\right) \psi \\
& E \psi=-1 \\
& E \psi\left(\frac{h}{2 \pi}\right) \frac{\partial \psi}{\partial t} \tag{8}\\
& E \psi=i \hbar \frac{\partial \psi}{\partial t} \quad\left(\because h=\frac{h}{2 \pi} \& i^{2}=-1\right)
\end{align*}
$$

From eqn (7)

$$
\begin{equation*}
\nabla^{2} \psi+\frac{2 m}{\hbar^{2}} E \psi-\frac{2 m}{\hbar^{2}} v \psi=0 \tag{9}
\end{equation*}
$$

Putting the value of $E \psi=i \hbar \frac{\partial \psi}{\partial t}$ in eqn (9) weiget,

$$
\begin{gather*}
\nabla^{2} \psi+\frac{2 m}{\hbar^{2}} \frac{\partial \psi}{\partial t}-\frac{2 m}{\hbar^{2}} v \psi=0 \\
\nabla^{2} \psi-\left(\frac{2 m}{\hbar^{2}}\right) \\
\left.\left(\frac{-\hbar^{2}}{2 m}\right) \nabla^{2} \psi+v \psi=\frac{\partial \psi}{\hbar^{2}}+v\right) \text { ih } \frac{\partial \psi}{\partial t}
\end{gather*}
$$

Eqn (10) Reprenents schrodinger's Hime dependent wave eqn.
Q. 2)

1) Consider the action of commutator $\left[x, P_{x}\right]$ on wave $f^{n} \psi(x, y, z)$

$$
\begin{aligned}
{\left[x, P_{x}\right] \psi } & =\left[x,-i \hbar \frac{\partial x}{}\right] \psi \\
& =-i \hbar\left[x, \frac{\partial}{\partial x}\right] \psi \\
& =-i \hbar\left(x \frac{\partial}{\partial x}-\frac{\partial}{\partial x} x\right) \psi \\
{\left[x, P_{x}\right] \psi } & =-i \hbar\left\{x \frac{\partial \psi}{\partial x}-\frac{\partial}{\partial x}(x \psi)\right\} \\
& =-i \hbar\left\{x \frac{\partial \psi}{\partial x}-x \frac{\partial \psi}{\partial x}-\psi\right\} \\
& =-i \hbar(-\psi)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore\left[x, p_{x}\right] \psi=i \hbar \psi \\
& \therefore\left[x, P_{x}\right]=i \hbar
\end{aligned}
$$

Q.2)
3) The variable quantity or oscillatory function characterising, deBorglue wave is called as wave function denoted by symbol ψ It is always associated with moving particle. The value of wave function associated with moving particle at a particular point x, y, z in space and the time t is related to the finding a particle at that time ψ.
i. 4 must be finite for all values of x, y and z.
ii. ψ must be single valued i.e. for each set of values of $x, 4$ and $z, 4$ must have only one value.
fin ψ must be continuous in all regions, except in those region where the potential energy $v(x, y, z)=\infty$
iv. The partial derivatives of ψ ie $\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}$ must also be finite, single-valued and continuous at all points, except at points where the potential $V(x)$ is infinite.
v. ψ must vanish at infinity i.e. $\psi=0$, as $x \rightarrow \pm \infty y \pm \pm \infty$ or $z \rightarrow \pm \infty$.

