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16.1  �Introduction
Frequent oil spills in the ocean and the dumping of oily wastes from industry 
into water bodies pose serious environmental problems. The critical chal-
lenge is to remove oil from the oil-contaminated water. Therefore, advanced 
technologies are essential to separate oil and water from oil–water mixtures. 
Expensive and time-consuming traditional methods have been used to 
retreat oily wastewater.1 Recently, much effort has been expended on the effi-
cient use of functional materials for the modification of porous substrates 
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that can strongly repel water and easily absorb oil or penetrate into it, so that 
oil can be easily removed from mixtures of oil and water. This property of the 
surface is referred to as superhydrophobic [water contact angle (WCA) > 150°] 
and superoleophilic [oil contact angle (OCA) ∼ 0°]. Considering this advanced 
surface feature, attempts have been made to fabricate superhydrophobic/
superoleophilic meshes, cotton fabrics, membranes and sponges by deposit-
ing functional materials for effective oil–water separation (Figure 16.1).2 For 
the efficient separation of oil from water, the material must exhibit a high 
absorption capability towards different oils and organic liquids, high sepa-
ration efficiency and high reusability along with high mechanical, thermal 
and chemical sustainability under harsh conditions. Surface wettability is 
influenced by the surface topography and the presence of low surface energy 
chemical groups on the surface. In the Cassie–Baxter model, the surface 

Figure 16.1  ��Schematic diagram of oil–water separation using superhydrophobic/
superoleophilic mesh, cotton fabric, sponge and membrane.



373Superhydrophobic Coatings for Oil–Water Separation

roughness factor is an essential element in controlling wettability.3 Along 
with low surface energy molecules, the hydrophobicity of rough surfaces can 
be significantly improved. Currently, superhydrophobic surfaces are fabri-
cated by forming rough structures on hydrophobic materials or reducing the 
surface energy of rough surfaces by chemical modification.4,5

This chapter describes various techniques developed for the fabrication of 
superhydrophobic/superoleophilic surfaces and processes for the separation 
of oil–water mixtures using superhydrophobic/superoleophilic substrates. 
Attention is particularly focused on substrates such as metal meshes, cotton 
fabrics, membranes and sponges that have given promising results in the 
separation of oil from oil–water mixtures.

16.2  �Fabrication Techniques for Superhydrophobic 
Coatings

Studies on the superhydrophobic phenomena of natural surfaces (plant 
leaves and animal/insect skin) have indicated that two important factors, 
surface topography and the presence of low surface energy chemical groups 
on the surface, are required for the fabrication of superhydrophobic coat-
ings, and to achieve such superhydrophobic surfaces various techniques 
can be used in practice (Figure 16.2). The common techniques described in 
the following subsections are electrospinning,6 the sol–gel technique,7 the  
layer-by-layer method,8 dip coating,9 spray coating10 and electrodeposition.11

16.2.1  �Electrospinning
Electrospinning is a versatile and effective technique for producing highly 
porous and flexible micro- and nanosized fibre membranes.12 During the 
electrospinning process, a high electric field (5–30 kV) is applied between 
the syringe needle and the collector, resulting in conversion of liquid drops 
into a jet and forming fine fibres by the effect of stretching and elonga-
tion of the jet. The liquid is forced out of the needle by the surface tension 
of the liquid drop, becoming a pendant droplet. When a droplet is suffi-
ciently charged, electrostatic repulsion changes its shape and produces a 
Taylor cone, resulting in a polarized jet. The jet first goes in straight and 
then becomes deposited on the collector. The jet has a small diameter, so 
it quickly solidifies and deposits as a solid fibre on the collector.13 In the 
synthesis of a polymer membrane, the diameter of the fibre and the poros-
ity of the membrane are dependent on the solution flow rate, applied volt-
age, drum revolutions per minute (rpm), molecular weight of the polymer, 
solution viscosity, needle diameter and needle tip to collector distance. The 
resulting polymer membrane is mostly hydrophobic, and surface modifica-
tion is necessary for superhydrophobicity.14,15 A schematic diagram of elec-
trospinning is shown in Figure 16.2a.
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16.2.2  �Sol–Gel Technique
The sol–gel technique is a simple, low-cost, widely accepted, rapid, low-
temperature and eco-friendly method for producing a wide range of nano-
structured coatings/films. It is the most preferred approach for obtaining 
good-quality coatings with controlled thickness. The method involves five pro-
cessing steps: sol preparation, hydrolysis, condensation, growth of particles 
and agglomeration.16 The sol–gel processed materials can be deposited on the 
substrate by dip-, spin- and spray-coating methods. Tetraethyl orthosilicate 
(TEOS) and tetramethyl orthosilicate (TMOS) are the most commonly used 
silicon alkoxides for the synthesis of silica-based materials by the sol–gel tech-
nique.17 A schematic diagram of the sol–gel process is shown in Figure 16.2b.

16.2.3  �Layer-by-Layer Method
The layer-by-layer deposition method is a preferred approach to produce 
hierarchical superhydrophobic coatings by controlling the coating thick-
ness. Deposition occurs by repeated application of molecular monolayers on 

Figure 16.2  ��Schematic diagrams of (a) electrospinning, (b) sol–gel, (c) layer-by-
layer, (d) dip-coating, (e) spray-coating and (f) electrodeposition 
techniques.
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the substrate surface through electrostatic interactions between the layers. 
The layer-by-layer deposition can be done using immersion, spraying and 
electrodeposition methods.18 Multiple deposited layers produce large-scale 
roughness on the substrate surface and post-modification of the surface is 
required to obtain superhydrophobicity.19,20 A schematic diagram of the 
layer-by-layer technique is shown in Figure 16.2c.

16.2.4  �Dip Coating
Dip coating is a widely used, simple and inexpensive technique for coating 
onto any solid substrate, including glass, fibrous surfaces, polymer films, 
metals and ceramics for various purposes.21 A wet liquid film is formed on 
the substrate by vertical immersion of the substrate in the coating solution 
and vertical withdrawal at a constant speed. Good quality of the coating film 
can be obtained by controlling parameters such as the speed of immersion 
and withdrawal, dipping time, drainage and evaporation of the solvent.22 
Owing to the capillary effect, the coating solution adheres to the substrate 
surface and excess solution drains off. After evaporation of the solvent, a thin 
layer of coating is formed on the substrate.23,24 More importantly, any shape 
of the substrate can be coated using the dip-coating technique. The viscosity, 
surface tension, density and pH of the coating solution and also humidity, 
number of immersion cycles and temperature can affect the quality of the 
coating.25 A schematic diagram of the dip-coating technique is shown in 
Figure 16.2d.

16.2.5  �Spray Coating
The spray-coating method is widely used for large-scale production, since 
there are no size restrictions for substrates.26 The parameters used, including 
flow rate, air pressure, substrate temperature, solution concentration, spray 
time, co-solvent combination, distance between nozzle and substrate and 
number of spray cycles, impact the coating.27 Spray coating is used for pro-
ducing high-quality thin films on an industrial scale.28 A schematic diagram 
of the spray-coating technique is shown in Figure 16.2e.

16.2.6  �Electrodeposition
Electrodeposition is a flexible and popular deposition technique that uses 
a cell with a working electrode and a counter electrode to generate current 
at a pre-set voltage.29 The working electrode is the substrate on which metal 
ions are deposited as a result of a chemical reaction controlled by an applied 
current or voltage. In this process, the substrate attains a different kind of 
surface topography. Sometimes, chemical modification is required to change 
the wetting properties of the surface.30 A schematic diagram of electrodepo-
sition is shown in Figure 16.2f.
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16.3  �Superhydrophobic Coatings for Oil–Water 
Separation

16.3.1  �Superhydrophobic Meshes
Metal meshes are ductile, have high mechanical strength and have a porous 
structure that allows liquids to penetrate readily. Therefore, the use of metal 
meshes as a substrate has attracted considerable attention for application 
in oil–water separations with changes to their surface wetting properties. 
Zulfiqar et al. deposited naturally available biowaste sawdust particles in 
combination with polychloroprene adhesive, carbon soot and silicone poly-
mer on a stainless-steel (SS) mesh for oil–water separation. The polychlo-
roprene adhesive was first applied on the SS mesh with a metal strip, then 
sawdust particles were applied with the help of a brush and the substrate 
was dipped in silicone solution. Carbon soot particles were deposited on the 
substrate by holding it over a flame and then dipping it in silicone solution 
to obtain a highly superhydrophobic and mechanically stable coating. The 
coated superhydrophobic SS mesh showed an oil separation efficiency of 
>90% for n-hexane, chloroform, toluene and dichloromethane. The coated 
mesh maintained its separation efficiency for five separation cycles and 
retained its superhydrophobic properties after mechanical abrasion.31 Chen 
et al. fabricated a superhydrophobic poly(ethylene terephthalate) (PET) mesh 
by dipping it in a solution of polydimethylsiloxane (PDMS) and fluorinated 
silica (F-SiO2) for use in oil–water separation. In an investigation of the rela-
tion between oil–water separation efficiency and pore size of the mesh, they 
found that the pore size of the mesh had a significant impact on the oil–water 
separation ability. A smaller pore size resulted in a lower apparent surface 
energy of the superhydrophobic PET mesh.32 Singh et al. prepared a super-
hydrophobic copper mesh for oil–water separation by a fabrication process 
involving the oxidation of the copper mesh followed by low-pressure anneal-
ing at low temperature; the latter treatment enhanced the hydrophobicity 
of the mesh by the formation of a Cu2O surface layer. The copper mesh was 
partially oxidized by treating it with hydrogen peroxide (H2O2) solution and 
then immersed in anhydrous ethanol for reduction, and eventually the cop-
per mesh became superhydrophobic in nature. The structural morphology 
of the copper mesh changed during the treatment, as shown in Figure 16.3a. 
The scanning electron microscope (SEM) image in Figure 16.3b demon-
strates that the during the oxidation and reduction process, the copper mesh 
became rougher. The pristine copper mesh showed a WCA of 120° and after 
oxidation and reduction the mesh had WCA values of 57 and 153°, respec-
tively. The superhydrophobic mesh showed a separation efficiency of >99% 
for an oil–water mixture containing n-hexane, n-octane, n-decane, n-hexadecane 
and liquid paraffin. Even after 40 cycles of separation of an n-hexadecane–
water mixture the mesh maintained a 99% separation efficiency.33

Tudu and Kumar prepared superhydrophobic meshes (steel and copper) 
by dipping into a solution of a mixture of perfluorodecyltriethoxysilane 
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(PFDTS) and TiO2 nanoparticles (NPs). The superhydrophobic steel and cop-
per mesh surfaces obtained exhibited WCA values of 161 ± 2 and 159 ± 3°, 
respectively. The coated meshes retained their superhydrophobic properties 
even when exposed to extreme environmental conditions such as corrosive 
chemicals, high temperatures and mechanical disturbances and showed 
excellent self-cleaning ability. The copper mesh showed greater stability for 
oil–water (benzene and water) separations up to 100 cycles with a separation 
efficiency of 98%. The copper mesh separated oil-in-water (surfactant-free 
toluene-in-water) emulsions more efficiently than the steel mesh.34 Varshney 
et al. synthesized a superhydrophobic/superoleophilic steel mesh using a 
chemical etching method. The mesh was immersed in mixture of hydrochlo-
ric acid and nitric acid, then washed with ethanol and distilled water and 
finally modified with lauric acid. The chemically modified mesh showed a 
WCA of 171 ± 4.5° and a separation efficiency of more than 99% for  
benzene–water and petroleum ether–water mixtures. The process for oil–water 
separation is shown in Figure 16.4.35

Comparative results of ongoing research on meshes are presented in Table 16.1.

16.3.2  �Superhydrophobic Sponges
A 3D porous sponge facilitates high liquid absorption and is one of the supe-
rior substrates in the separation of oil–water mixtures. Cho et al. prepared 
a superhydrophobic nanocomposite film by dipping melamine sponge in a 

Figure 16.3  ��(a) Optical microscope (OM) images of pristine and treated (oxidation 
and reduction) copper meshes, the insets show the water drop images. 
(b) SEM images of single Cu wire pristine and treated (oxidation and 
reduction) copper meshes. Reproduced from ref. 33 with permission 
from Elsevier, Copyright 2018.
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blend of ormosil (organically modified silica) suspension and polymethylhy-
droxysiloxane followed by modification with perfluorooctyltriethoxysilane 
NPs to further improve the superhydrophobicity. The superhydrophobic 
sponge showed an absorption capacity of >80 g g−1 for chloroform and excel-
lent recycling performance of up to 20 cycles against chloroform, pump oil 
and hexane.36 Peng et al. applied a PDMS layer on a melamine sponge by 
the dip-coating technique followed by UV irradiation to obtain a superhy-
drophobic sponge. The PDMS-coated melamine sponge showed a WCA of 
156.2°, and absorbed oil and organic solvents up to 103–179 times its own 
weight.37

Zou et al. fabricated superhydrophobic/superoleophilic high-density 
polyethylene (HDPE) aerogel-coated natural rubber latex foam (NRLF) for 
oil–water separation through a phase separation method. The HDPE aerogel-
coated NRLF showed a porous structure and particle-like morphology with 
a WCA of >150°. The modified NRLF was an excellent absorbent against 
n-hexane and carbon tetrachloride.38 Sun et al. prepared a superhydrophobic 
porous melamine sponge by immersion in lignin–hexadecyltrimethoxysilane  
(HDTMS) solution under sonication. The superhydrophobic melamine 
sponge showed a separation efficiency of >98.6% for different types of oil–
water mixtures and excellent durability for 35 cycles of oil–water separation. 
The sponge showed a separation efficiency of >98.7% up to 100 cycles.39 
Liu et al. dip coated a sodium dodecylbenzene sulfonate-modified mag-
nesium hydroxide particle suspension on melamine sponge. The coated 
sponge showed a WCA of 163 ± 3° and an OCA of 0°. The superhydropho-
bic/superoleophilic sponge exhibited excellent demulsification for immisci-
ble oil–water mixtures, surfactant-free emulsions and surfactant-stabilized 
emulsions.40

Comparative results of ongoing research using sponges as substrates are 
given in Table 16.2.

Figure 16.4  ��Experimental setup demonstrating the separation of petroleum ether 
and water. The water is coloured for ease of visualization. During sep-
aration, the ether penetrated through the coated mesh and water was 
retained on the coated mesh surface. Reproduced from ref. 35 with 
permission from the Royal Society of Chemistry.
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16.3.3  �Superhydrophobic Cotton Fabrics
Cheng et al. prepared a fluorine-free superhydrophobic cotton fabric via the 
enzyme etching method and coated its surface with epoxidized soybean oil 
and stearic acid. The coated cotton fabric sustained its superhydrophobic 
property against mechanical abrasion, tape peeling, ultrasonication, chemi-
cal resistance and low/high-temperature treatments. The superhydrophobic 
cotton fabric showed an oil–water separation efficiency of 98%.41 Gao et al. 
prepared fabricated superhydrophobic coatings on 2D fabric and 3D sponge 
through a phase separation method. In this process, PDMS dissolved in tet-
rahydrofuran (THF) and water as a non-solvent was added for phase separa-
tion. The modified 2D or 3D porous substrates exhibited a good separation 
ability for various types of oil–water mixtures.42 Li et al. deposited a suspen-
sion of copper stearate (CS) and PDMS on various substrates such as iron, 
paper, glass, copper and fabric via spraying, dipping and brushing for the 
preparation of superhydrophobic surfaces. Among them, CS/PDMS-coated 
cotton effectively separated oil–water mixtures and oil–water emulsions. The 
prepared fabric showed high water repellency and oil absorbance ability. The 
process for the separation of oil–water mixtures is shown in Figure 16.5a. An 
emulsion was prepared with water and toluene. During the oil–water separa-
tion, the toluene was easily removed from the emulsion, as shown in Figure 
16.5b.43

Talebizadehsardari et al. deposited a superhydrophobic nanocomposite 
of PDMS/silica NPs on cotton fabric by a dip-coating method. The superhy-
drophobic cotton fabric showed an effective separation efficiency of 97–99% 
for paraffin oil, toluene, hexane and a vegetable oil–water mixture. With 
respect to reusability, the superhydrophobic cotton fabric showed a separa-
tion efficiency of 95% even after 50 separation cycles.44 Dong et al. prepared 

Figure 16.5  ��(a) Photograph of the oil–water separation process using the coated 
fabric. (b) Optical micrographs of the emulsion before and after sepa-
ration. Reproduced from ref. 43 with permission from Elsevier, Copy-
right 2020.
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superhydrophobic cotton by applying polydopamine (PDA) followed by sur-
face modification using stearic acid. The prepared sample exhibited a WCA 
of 162° and a sliding angle of 7.8°. The volume of water was measured before 
and after the oil–water separation and the separation efficiency was found to 
be ∼100%.45

Comparative results of recent studies on superhydrophobic cotton fabrics 
for oil–water separation are given in Table 16.3.

16.3.4  �Superhydrophobic Membranes
Moatmed et al. prepared a free-standing and flexible nanofibrous superhy-
drophobic/superoleophilic membrane by electrospinning using Fe3O4 NPs 
embedded in polystyrene nanofibres for oil–water separation. The superhy-
drophobic membrane exhibited a WCA of 162° and showed a separation effi-
ciency of 99.8% for hexane in a gravity-driven separation. It was reported that 
the superhydrophobic membrane showed a separation efficiency of 99.8% 
for low-density oils and 92% for high-density oils.46 Ma et al. first obtained 
a free-standing polyimide (PI) nanofibrous hydrophilic membrane by the 
electrospinning technique. The PI membranes were immersed alternately in 
phytic acid solution and ferric chloride solution multiple times and finally 
immersed in octadecyltrimethoxysilane solution to obtain a superhydropho-
bic membrane. The superhydrophobic membrane showed a high efficiency 
in the separation of various oils, including dichloromethane, trichlorometh-
ane, dichloroethane, bromobenzene and carbon tetrachloride, from oil–
water mixtures. The membrane maintained a separation efficiency of >99% 
along with a high separation flux of 8424 × 105 L m−2 h−1 even after 20 sepa-
ration cycles.47

Wang et al. fabricated an ultrathin polytetrafluoroethylene fibrous membrane 
(UTPFM) using an electro-centrifugal spinning method. A tree-grape-like 
structure was observed on the membrane fibres. A schematic diagram of 
the process for the fabrication of the membrane is shown in Figure 16.6a.  
Figure 16.6b illustrates the growing process of tree grapes. The number and 
size of the grape structure depend on the concentration of polyvinylpyrro-
lidone (PVP)–polytetrafluoroethylene (PTFE) (Figure 16.6c). The sample 
names UTPFM-1, UTPFM-2, UTPFM-3 and UTPFM-4 are related to PVP : PTFE 
ratios of 1 : 6, 1 : 4, 1 : 2.5 and 1 : 1, respectively. Figure 16.6d–g show SEM 
images of the membrane with changes in the grape structure for different 
PVP : PTFE ratios. As the ratio of PVP to PTFE increases, a grape on the fibre 
surface becomes larger. The average diameter of the grapes varied as 0.6, 
0.9, 1.4 and 1.8 µm (Figure 16.6d–g). As the grapes became larger and more 
numerous, the membrane surface became rougher (Figure 16.6h–k). The 
optimized PVP–PTFE fibrous membrane showed high porosity along with a 
WCA of 154.6°. The membrane showed a permeability of 3200 L m−2 h−1 and 
a separation efficiency of 99% during gravity-driven separation. The mem-
brane maintained its superhydrophobicity (with a WCA of 153.6°) after 1000 
cycles of abrasion.48
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Su et al. generated pine-needle-like titanium dioxide (TiO2) nanorods 
(TNs) on poly(vinylidene fluoride-co-hexafluoropropylene) nanofibre (PNF) 
membranes via a hydrothermal process and then modified them using 
1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS) to obtain a superhydro-
phobic PNF@TNsPFDS membrane. The PNF membrane was prepared by 
solution blow spinning (SBS), and its surface morphology is shown in Figure 
16.7a. The purpose of SBS is to generate a high-speed airflow to compress 
and elongate the solution drop, which subsequently solidifies into nanofi-
bres after the solvent has evaporated. The TNs were generated by a two-step 

Figure 16.6  ��(a) Schematic diagram of the fabrication process for UTPFM. (b) Growth 
of tree grapes. (c) Schematic diagram of the growing process of  
UTPFMs. SEM images of (d) UTPFM-1, (e) UTPFM-2, (f ) UTPFM-3 
and (g) UTPFM-4. (h–k) 3D surface morphology and roughness of 
UTPFMs. Reproduced from ref. 48 with permission from Elsevier, 
Copyright 2021.
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hydrothermal process: in the first step TiO2 crystals (TCs) were grown and 
in the second step nanorods (TNs) were formed. The growth of TiO2 crystals 
and TNs can be seen in Figure 16.7b and c, respectively. Figure 16.7d indi-
cates that the PFDS modification did not affect the surface structure. The 
membrane exhibited a WCA of 155.0° and an OCA of 0°. The superhydropho-
bic membrane showed a separation efficiency of 99.99% for different types 
of oils such as dichloromethane, n-hexane, toluene and kerosene.49

Zareei Pour et al. fabricated superhydrophobic/superoleophilic electro-
spun poly(vinylidene fluoride) (PVDF) membranes followed by chemical 
vapour deposition of dichlorodimethylsilane. The prepared membrane 
showed high water repellency and breathability and oil sorption and oil–water 
separation properties. The nanofibrous membranes showed an oil–
water separation efficiency of 100.0, 93.7, 23.3, 35.0 and 100.0% for n-hexane, 
kerosene, crude oil, frying oil and toluene–water mixture, respectively.50

Comparative results of recent studies on superhydrophobic nanofibrous 
membranes for oil–water separation are given in Table 16.4.

16.4  �Conclusions and Outlook
This chapter has addressed the most recent progress in the fabrication of 
superhydrophobic/superoleophilic coatings on common substrates, such as 
meshes, sponges, cotton textiles and membranes, for oil–water separation 
applications. The most commonly used fabrication techniques for achiev-
ing a superhydrophobic surface were briefly discussed. It is concluded that 

Figure 16.7  ��SEM images of (a) pristine PNFs, (b and c) growth of TCs and TNs on 
PNFs, respectively, and (d) PNF@TNsPFDS fibres. Reproduced from 
ref. 49 with permission from Elsevier, Copyright 2021.
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superhydrophobic/superoleophilic meshes, sponges, cotton textiles and 
membranes exhibit outstanding oil and water separation from oil–water 
mixtures and emulsions. Metal mesh is a ductile, porous and durable sub-
strate whereas cotton textiles and membranes are highly flexible and porous 
and superhydrophobicity could be easily achieved by depositing a functional 
material because they have pre-existing hierarchical surface structures. 
Three-dimensional sponges demonstrated a capability for high-volume liq-
uid absorption, hence superhydrophobic/superoleophilic sponges easily 
remove oil from oil–water mixtures.

Despite the substantial progress made in these areas, there are still some 
obstacles to be addressed in future research:
  
	 1.	� The hierarchical nano/microstructure is damaged under harsh condi-

tions that affect the wetting properties.
	 2.	� Repetition of the oil–water separation process can block the pores of 

the substrate, consequently reducing the separation efficiency.
	 3.	� Functional materials become detached from the substrate during 

repeated oil–water separation.
	 4.	� Fabrication costs should be lowered for large-scale production.
	 5.	�M aintaining the surface properties for the separation of low- and 

high-viscosity oils is challenging.
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