Advances in Superhydrophobic Coatings

Edited by Viswanathan S. Saji

Contents

Part I: Fundamentals 1 Chapter 1 Surface Wettability and Superhydrophobicity 3 Alina Peethan, M. Aravind and Sajan Daniel George 1.1 Introduction 3 1.2 The Fundamental Theory of Wettability 4 1.2.1 Basic Wetting Models 6 1.2.2 Conflicts in the Wenzel and Cassie–Baxter Wetting Models 10 1.2.3 Modern Wetting Models 10 1.3 Contact Angle 12 1.4 Contact Angle and Contact Angle Hysteresis Measurement Techniques 14 1.4.1 Sessile Drop Method 14 1.4.2 Tilting Plate Method 16 1.4.3 Captive Bubble Method 16 1.4.4 Wilhelmy Plate Method 17 1.4.5 Other Popular Methods 18 1.5 Wettability and Superhydrophobicity 18 1.6 Conclusions and Outlook 20 Acknowledgements 21 References 21

Advances in Superhydrophobic Coatings

Edited by Viswanathan S. Saji

[©] The Royal Society of Chemistry 2024

Published by the Royal Society of Chemistry, www.rsc.org

5

Chapter 2	Superhydrophobic Coatings: Types and Fabrication Approaches Meena Laad, Akhila Shalu and Babaji Ghule	26
	2.1 Introduction	26
	2.2 Fabrication of Superhydrophobic Coatings	27
	2.2.1 Physical Methods	27
	2.2.2 Chemical Methods	39
	2.3 Conclusions and Outlook Acknowledgements	48
	References	48
Part II: M	aterials and Methods	53
Chapter 3	Eco-friendly and Sustainable Materials and Processes for Producing Superhydrophobic Surfaces <i>Ilker S. Bayer</i>	55
	3.1 Introduction	55
	3.2 Hydrophobic Colloidal Nanoparticles with	
	Sustainable Origins	57
	3.3 Eco-friendly Materials and Processes Based on	
	Silicone Chemistry	66
	3.4 Superhydrophobic Surfaces and Coatings Based on	75
	3.5. Conclusions and Outlook	7 5 80
	References	81
Chapter 4	Wax-integrated Superhydrophobic Coatings Viswanathan S. Saji	84
	4.1 Introduction	84
	4.2 Wax-incorporated Composite Superhydrophobic	01
	Coatings	86
	4.2.1 Anti-corrosion and Anti-fouling Applications	86
	4.2.2 Paper and Textile Applications	92
	4.2.3 Food Industry Applications	96
	4.2.4 Wood Industry Applications	100
	4.2.5 Oll-Water Separation	101
	4.2.0 Others 4.3 Conclusions and Outlook	103
	References	103
Chapter 5	Nanocarbon-based Superhydrophobic Coatings Viswanathan S. Saji	109

	5.1 Introduction	109
	5.2 Carbon Nanotubes	110
	5.2.1 Aligned and Non-aligned Carbon Nanotubes	110
	5.2.2 Composite Coatings with Polymers, Metals and	
	Ceramics	113
	5.2.3 Sponges, Foams, Aerogels, Fabrics and	
	Meshes	116
	5.3 Carbon Nanofibres	116
	5.4 Others	117
	5.5 Graphene	118
	5.6 Application Areas	121
	5.6.1 Anti-corrosion	121
	5.6.2 Oil Separation	124
	5.6.3 Anti-icing	124
	5.6.4 Others	126
	5.7 Conclusions and Outlook	127
	References	129
Chapter 6	Superhydrophobic Polymer and Composite Coatings	135
	A. S. Sethulekshmi, Venu Gopika, Raman Akhila, Asok	
	Aparna, Saran S. Kumar, Appukuttan Saritha and	
	Kuruvilla Joseph	
	6.1 Introduction	135
	6.2 Superhydrophobic Polymer/Composite Coatings by	
	Conventional Coating Methods	136
	6.2.1 Spin Coating	137
	6.2.2 Spray Coating	138
	6.2.3 Dip Coating	139
	6.2.4 Others	141
	6.3 Applications	143
	6.4 Conclusions and Outlook	150
	Acknowledgements	150
	References	150
Chapter 7	Laser-assisted Superhydrophobic Surfaces	153
	Alina Peethan and Sajan Daniel George	
	7.1 Introduction	153
	7.2 Theory of Laser–Matter Interactions	154
	7.3 Tailoring of Laser-induced Surface Wettability	157
	7.3.1 Nanosecond Laser-assisted Fabrication	157
	7.3.2 Picosecond Laser-assisted Fabrication	164
	7.3.3 Femtosecond Laser-assisted Fabrication	168
	7.4 Applications of Laser-patterned Surfaces	173
	7.5 Conclusions and Outlook	175

xiii

xiv		Contents
	Acknowledgements References	175 175
Part III: St	ubstrates and Methods	179
Chapter 8	Superhydrophobic Coatings on Metallic Substrates I: Magnesium Based Yaming Wang and Shuqi Wang	181
	8.1 Introduction	181
	8.2 Design Strategies for Robust Superhydrophobicity	182
	8.2.1 Passive Resistance Strategies	182
	8.2.2 Active Regeneration Strategies	185
	8.3 Fabrication Approaches	188
	8.3.1 Low Surface Energy Treatment	188
	8.3.2 Tailoring Surface Micro/Nanostructures	191
	8.3.3 Spraying	192
	8.3.4 Hydrothermal/Solvothermal (HT/ST)	
	Treatment	194
	8.3.5 Sol–Gel Method	194
	8.3.6 Electrodeposition (ED)	195
	8.3.7 Solution Immersion	196
	8.3.8 Anodic Oxidation/Plasma Electrolytic	
	Oxidation (AO/PEO)	197
	8.3.9 Chemical/Electrochemical Etching	198
	8.3.10 Laser Texturing	199
	8.3.11 Advantages and Disadvantages	199
	8.4 Durability	200
	8.4.1 Mechanical Durability	200
	8.4.2 Chemical Durability	202
	8.4.4 Others	205
	8.5 Conclusions and Outlook	205
	Acknowledgements	200
	References	208
Chapter 9	Superhydrophobic Coatings on Metallic Substrates II: Aluminium and Titanium Based Shuqi Wang and Yaming Wang	212
	9.1 Introduction	212
	9.2 Fabrication Approaches	213
	9.2.1 Etching	213
	9.2.2 Hydrothermal	215

Contents

	9.2.3 Anodic Oxidation	216
	9.2.4 Plasma Electrolytic Oxidation	219
	9.2.5 Electrodeposition	221
	9.2.6 Spraying	222
	9.2.7 Laser Treatment	224
	9.2.8 All-inorganic Superhydrophobic Coatings	224
	9.2.9 Others	226
	9.2.10 Comparison of Fabrication Approaches	227
	9.3 Durability	227
	9.3.1 Mechanical Durability	228
	9.3.2 Chemical Durability	230
	9.3.3 Others	232
	9.4 Collectusions and Outlook	232
	Acknowledgements	233
	References	233
Chapter 10	Superhydrophobic Polymers	238
1	K. Ellinas and P. Dimitrakellis	
	10.1 Introduction	238
	10.2 Superhydrophobic Surfaces and Coatings	240
	10.2.1 Top-down Texturing Methods to Create	
	Superhydrophobic Polymers	240
	10.2.2 Bottom-up/Synthesis Methods to Create	
	Superhydrophobic Polymers	251
	10.3 Conclusions and Outlook	263
	References	264
Chapter 11	Superhydrophobic Coatings on Food Industry-relevant	
I	Materials	272
	J. Jeya Jeevahan, P. Booma Devi, J. Senthil Kumar and	
	R. B. Durairaj	
	11.1 Introduction	070
	11.1 Infloduction	272
	Materials	272
	11.2 Eastors That Affect Superbydrophobioity	275
	11.2 1 Surface Tension of Different Liquids	275
	11.3.1 Surface Mass Density	275
	11.3.2 Surface Mass Defisity	277
	11.3.5 Number of Layers/Components	219
	11.3.4 Fost-treatments	200 202
	11.4 Challenges and Future Research Opportunities	202
	11.5 Conclusions and Outlook	203
	References	205
	10101011000	205

xv

Co	nte	nts
UU.	1110	1110

Chapter 12	Superhydrophobic Coatings on Wood B. Arminger and J. Janesch	288
	12.1 Introduction	288
	Properties	289
	12.1.2 Strategies for Wood Protection	291
	12.1.3 Advantages of Superhydrophobic Wood	
	Surfaces	292
	12.2 Superhydrophobic Coatings for Wood	293
	12.3 Future Research and Potential Applications	301
	12.4 Conclusions and Outlook	303
	Acknowledgements	304
	References	305
Chapter 13	Superhydrophobic Coatings on Textiles and Papers Ning Tian and Junping Zhang	307
		207
	13.1 Introduction	307
	and Deports	200
	13.2.1 Din Costing	300
	13.2.1 Dip Coaring	309
	13.2.2 Layer by Layer Assembly	310
	13.2.4 Chemical Vapor Deposition	311
	13.2.5 Electrospinning	312
	13.2.6 Printing	313
	13.2.7 Other Methods	314
	13.3 Evaluation Parameters for Superhydrophobicity of	
	Textiles and Papers	315
	13.3.1 CA, SA and WSA	315
	13.3.2 Water Repellency Grade	315
	13.3.3 Hydrostatic Pressure	316
	13.4 Evaluation of Mechanical Durability	316
	13.4.1 Abrasion Methods	317
	13.4.2 Laundering Methods	317
	13.4.3 Other Methods	318
	13.5 Methods to Improve Durability	318
	13.5.1 Covalent Bonding	318
	13.5.2 Cross-linking in Coatings	319
	13.5.3 Employment of Elastic Composites	319
	13.5.4 Self-healing	320
	13.5.5 Multi-layer Design	320
	13.6 Functionalization of Superhydrophobic Textiles and	224
	rapers	321
	Depers	201
	Papers	321

Contents

	13.6.2 Hemostatic Superhydrophobic Textiles	322
	13.6.3 Water-Oil Separation Using Supernydrophobi	.C
	12 C 4 Anti coolding Superbudronhobio Toutilos	323
	13.6.5 Anti-bacterial Superhydrophobic Textiles and	325
	Papers 13.6.6 Flame-retardant Superhydrophobic Textiles	325
	and Papers	327
	13.7 Challenges	327
	13.7.1 Mechanical Durability	328
	13.7.2 Environmentally Friendly Methods	328
	13.7.3 Production Costs	328
	13.8 Conclusions and Outlook	328
	Acknowledgements	329
	References	329
Part IV: A	pplications	335
Chapter 14	Anti-corrosion and Anti-fouling Superhydrophobic	
	Coatings	337
	Md Julker Nine, Tran Thanh Tung and Dusan Losic	
	14.1 Introduction	337
	14.2 What You Require to Achieve Superhydrophobicity	337
	14.3 Superhydrophobic Anti-corrosion Coatings	339
	14.3.1 Anti-corrosion Mechanism	339
	14.3.2 Anti-corrosion Applications	340
	14.4 Superhydrophobic Anti-fouling Coatings	344
	14.4.1 Anti-fouling Mechanism	344
	14.4.2 Anti-fouling Applications	346
	14.5 Conclusions and Outlook	351
	Acknowledgements	352
	References	352
Chapter 15	Anti-icing and Anti-fogging Superhydrophobic Coatings	356
	Ajay Mittai, jaishi ee ana Manjeet Singh Goyat	
	15.1 Introduction	356
	15.2 Superhydrophobic Coatings for Anti-icing	
	Applications	358
	15.2.1 Mechanism of Anti-icing	358
	15.2.2 Recent Advances	359
	15.3 Superhydrophobic Coatings for Anti-fogging	
	Applications	362
	15.3.1 Mechanism of Anti-fogging	362
	15.3.2 Recent Advances	363

	15.4 Obstacles to Commercial Implementation	366
	15.4.1 Long-term Durability	366
	15.4.2 Problem with Condensation at Extremely	
	Low Temperatures	367
	15.4.3 Highly Expensive Superhydrophobic	
	Agents	367
	15.4.4 Revising Mechanisms and Models	368
	15.5 Conclusions and Outlook	368
	Acknowledgements	368
	References	368
Chapter 16	Superhydrophobic Coatings for Oil–Water Separation	371
	Sanjay S. Latthe, Pradip P. Gaikwad, Akshay R. Jundle,	
	Sagar S. Ingole, Rajaram S. Sutar, Kishor Kumar Sadasivuni and Shanhu Liu	
	de a trata hartier	074
	16.1 Introduction	3/1
	16.2 Fabrication Techniques for Supernydrophobic	272
	Coatings	3/3
	16.2.1 Electrospinning	3/3
	16.2.2 Sol-Gel Technique	374
	16.2.3 Layer-by-Layer Method	374
	16.2.4 Dip Coating	3/5
	16.2.5 Spray Coalling	3/5
	16.2.6 Electrodeposition	3/5
	16.3 Superhydrophobic Coalings for Oll-water	276
	Separation	3/6
	16.3.1 Superhydrophobic Mesnes	370
	16.3.2 Superhydrophobic Sponges	3//
	16.3.3 Superhydrophobic Cotton Fabrics	381
	16.3.4 Supernydrophobic Memoranes	383
	16.4 Conclusions and Outlook	385
	Acknowledgements	387
	References	387
Chapter 17	Superhydrophobic Coatings for Drag Reduction and	
	Heat Transfer Ajay Mittal, Jaishree and Manjeet Singh Goyat	390
	17.1 Introduction	390
	17.2 Superhydrophobic Coatings for Drag	0.0.1
	Reduction	391
	17.2.1 Mechanism of Drag Reduction	391
	17.2.2 Recent Advances	392
	17.3 Superhydrophobic Coatings for Improvement of	
	Heat Transfer	393

Contents

	17.3.1 Superhydrophobic Coatings for Boiling Heat	20/
	17.2.2. Superbudrenhobie Coatings for	394
	Condensation Heat Transfer	205
	ta 2.2. Descrit A horness	395
	17.3.3 Recent Advances	396
	17.4 Challenges in the Industrial Use of Superhydrophobi Coatings for Reduced Drag and Enhanced Heat	с
	Transfer	398
	17.5 Conclusions and Outlook	400
	Acknowledgements	400
	References	401
Chapter 18	Self-healing Superhydrophobic Coatings	403
	Arpita Shome, Avijit Das and Uttam Manna	
	18.1 Introduction	403
	18.1.1 Extrinsic Pathways for Self-healing	404
	18.1.2 Intrinsic Pathways for Self-healing	405
	18.2 The Importance of Integrating Self-healing	
	Characteristics with Superhydrophobicity	407
	18.3 Self-healing Superhydrophobicity: Renewing the	
	Surface Chemistry	409
	18.3.1 Fluorinated Molecule-derived Fabrication	409
	18.3.2 Polydimethylsiloxane-based Fabrication	412
	18.3.3 Miscellaneous Chemistries	414
	18.4 Reconstruction of the Mechanically Damaged	
	Topography for Self-healing Superhydrophobicity	416
	18.5 Attainment of Self-healing Superhydrophobicity via	
	Simultaneous Regeneration of Both Chemistry and	
	Topography	420
	18.6 Conclusions and Outlook	423
	Acknowledgements	424
	References	424
		121
Chapter 19	Stretchable Superhydrophobic Coatings	428
	Xiaojing Wang, Siyuan Xiang, Wendong Liu and	
	Shengyang Tao	
	19.1 Introduction	428
	19.2 Strategies to Achieve Stretchable Superhydrophobic	
	Coatings	429
	19.2.1 Modifying Elastomers with an Additional	
	Layer of Material	430
	19.2.2 Hybridizing Elastomers with Functional	
	Materials	435
	19.2.3 Directly Employing Bulk Elastomers	439

xix

19.3 Application of Stretchable Superhydrophobic	
Coatings	442
19.3.1 Strain Sensing	443
19.3.2 Prevention of Corrosion	443
19.3.3 Oil–Water Separation	445
19.3.4 Anti-icing	446
19.4 Conclusions and Outlook	448
Acknowledgements	448
References	448
ubject Index	452

CHAPTER 16

Superhydrophobic Coatings for Oil–Water Separation

SANJAY S. LATTHE (© 0000-0002-6349-666X)^{*a}, PRADIP P. GAIKWAD^b, AKSHAY R. JUNDLE^b, SAGAR S. INGOLE^b, RAJARAM S. SUTAR^b, KISHOR KUMAR SADASIVUNI^c AND SHANHU LIU (© 0000-0003-1382-7157)^{*d}

^aSelf-cleaning Research Laboratory, Department of Physics, Vivekanand College (Autonomous), (Affiliated to Shivaji University, Kolhapur), Kolhapur 416003, Maharashtra, India; ^bSelf-cleaning Research Laboratory, Department of Physics, Raje Ramrao Mahavidyalaya, (Affiliated to Shivaji University, Kolhapur), Jath, Sangli 416404, Maharashtra, India; ^cCenter for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; ^dHenan Key Laboratory of Polyoxometalate Chemistry, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China

*E-mail: latthes@gmail.com, liushanhu@vip.henu.edu.cn

16.1 Introduction

Frequent oil spills in the ocean and the dumping of oily wastes from industry into water bodies pose serious environmental problems. The critical challenge is to remove oil from the oil-contaminated water. Therefore, advanced technologies are essential to separate oil and water from oil-water mixtures. Expensive and time-consuming traditional methods have been used to retreat oily wastewater.¹ Recently, much effort has been expended on the efficient use of functional materials for the modification of porous substrates

Advances in Superhydrophobic Coatings

Edited by Viswanathan S. Saji

[©] The Royal Society of Chemistry 2024

Published by the Royal Society of Chemistry, www.rsc.org

that can strongly repel water and easily absorb oil or penetrate into it, so that oil can be easily removed from mixtures of oil and water. This property of the surface is referred to as superhydrophobic [water contact angle (WCA) > 150°] and superoleophilic [oil contact angle (OCA) ~ 0°]. Considering this advanced surface feature, attempts have been made to fabricate superhydrophobic/ superoleophilic meshes, cotton fabrics, membranes and sponges by depositing functional materials for effective oil–water separation (Figure 16.1).² For the efficient separation of oil from water, the material must exhibit a high absorption capability towards different oils and organic liquids, high separation efficiency and high reusability along with high mechanical, thermal and chemical sustainability under harsh conditions. Surface wettability is influenced by the surface topography and the presence of low surface energy chemical groups on the surface. In the Cassie–Baxter model, the surface

Figure 16.1 Schematic diagram of oil-water separation using superhydrophobic/ superoleophilic mesh, cotton fabric, sponge and membrane.

roughness factor is an essential element in controlling wettability.³ Along with low surface energy molecules, the hydrophobicity of rough surfaces can be significantly improved. Currently, superhydrophobic surfaces are fabricated by forming rough structures on hydrophobic materials or reducing the surface energy of rough surfaces by chemical modification.^{4,5}

This chapter describes various techniques developed for the fabrication of superhydrophobic/superoleophilic surfaces and processes for the separation of oil-water mixtures using superhydrophobic/superoleophilic substrates. Attention is particularly focused on substrates such as metal meshes, cotton fabrics, membranes and sponges that have given promising results in the separation of oil from oil-water mixtures.

16.2 Fabrication Techniques for Superhydrophobic Coatings

Studies on the superhydrophobic phenomena of natural surfaces (plant leaves and animal/insect skin) have indicated that two important factors, surface topography and the presence of low surface energy chemical groups on the surface, are required for the fabrication of superhydrophobic coatings, and to achieve such superhydrophobic surfaces various techniques can be used in practice (Figure 16.2). The common techniques described in the following subsections are electrospinning,⁶ the sol–gel technique,⁷ the layer-by-layer method,⁸ dip coating,⁹ spray coating¹⁰ and electrodeposition.¹¹

16.2.1 Electrospinning

Electrospinning is a versatile and effective technique for producing highly porous and flexible micro- and nanosized fibre membranes.¹² During the electrospinning process, a high electric field (5-30 kV) is applied between the syringe needle and the collector, resulting in conversion of liquid drops into a jet and forming fine fibres by the effect of stretching and elongation of the jet. The liquid is forced out of the needle by the surface tension of the liquid drop, becoming a pendant droplet. When a droplet is sufficiently charged, electrostatic repulsion changes its shape and produces a Taylor cone, resulting in a polarized jet. The jet first goes in straight and then becomes deposited on the collector. The jet has a small diameter, so it quickly solidifies and deposits as a solid fibre on the collector.¹³ In the synthesis of a polymer membrane, the diameter of the fibre and the porosity of the membrane are dependent on the solution flow rate, applied voltage, drum revolutions per minute (rpm), molecular weight of the polymer, solution viscosity, needle diameter and needle tip to collector distance. The resulting polymer membrane is mostly hydrophobic, and surface modification is necessary for superhydrophobicity.^{14,15} A schematic diagram of electrospinning is shown in Figure 16.2a.

Figure 16.2 Schematic diagrams of (a) electrospinning, (b) sol-gel, (c) layer-bylayer, (d) dip-coating, (e) spray-coating and (f) electrodeposition techniques.

16.2.2 Sol-Gel Technique

The sol-gel technique is a simple, low-cost, widely accepted, rapid, lowtemperature and eco-friendly method for producing a wide range of nanostructured coatings/films. It is the most preferred approach for obtaining good-quality coatings with controlled thickness. The method involves five processing steps: sol preparation, hydrolysis, condensation, growth of particles and agglomeration.¹⁶ The sol-gel processed materials can be deposited on the substrate by dip-, spin- and spray-coating methods. Tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS) are the most commonly used silicon alkoxides for the synthesis of silica-based materials by the sol-gel technique.¹⁷ A schematic diagram of the sol-gel process is shown in Figure 16.2b.

16.2.3 Layer-by-Layer Method

The layer-by-layer deposition method is a preferred approach to produce hierarchical superhydrophobic coatings by controlling the coating thickness. Deposition occurs by repeated application of molecular monolayers on the substrate surface through electrostatic interactions between the layers. The layer-by-layer deposition can be done using immersion, spraying and electrodeposition methods.¹⁸ Multiple deposited layers produce large-scale roughness on the substrate surface and post-modification of the surface is required to obtain superhydrophobicity.^{19,20} A schematic diagram of the layer-by-layer technique is shown in Figure 16.2c.

16.2.4 Dip Coating

Dip coating is a widely used, simple and inexpensive technique for coating onto any solid substrate, including glass, fibrous surfaces, polymer films, metals and ceramics for various purposes.²¹ A wet liquid film is formed on the substrate by vertical immersion of the substrate in the coating solution and vertical withdrawal at a constant speed. Good quality of the coating film can be obtained by controlling parameters such as the speed of immersion and withdrawal, dipping time, drainage and evaporation of the substrate surface and excess solution drains off. After evaporation of the solvent, a thin layer of coating is formed on the substrate.^{23,24} More importantly, any shape of the substrate can be coated using the dip-coating technique. The viscosity, surface tension, density and pH of the coating solution and also humidity, number of immersion cycles and temperature can affect the quality of the coating.²⁵ A schematic diagram of the dip-coating technique is shown in Figure 16.2d.

16.2.5 Spray Coating

The spray-coating method is widely used for large-scale production, since there are no size restrictions for substrates.²⁶ The parameters used, including flow rate, air pressure, substrate temperature, solution concentration, spray time, co-solvent combination, distance between nozzle and substrate and number of spray cycles, impact the coating.²⁷ Spray coating is used for producing high-quality thin films on an industrial scale.²⁸ A schematic diagram of the spray-coating technique is shown in Figure 16.2e.

16.2.6 Electrodeposition

Electrodeposition is a flexible and popular deposition technique that uses a cell with a working electrode and a counter electrode to generate current at a pre-set voltage.²⁹ The working electrode is the substrate on which metal ions are deposited as a result of a chemical reaction controlled by an applied current or voltage. In this process, the substrate attains a different kind of surface topography. Sometimes, chemical modification is required to change the wetting properties of the surface.³⁰ A schematic diagram of electrodeposition is shown in Figure 16.2f.

16.3 Superhydrophobic Coatings for Oil–Water Separation

16.3.1 Superhydrophobic Meshes

Metal meshes are ductile, have high mechanical strength and have a porous structure that allows liquids to penetrate readily. Therefore, the use of metal meshes as a substrate has attracted considerable attention for application in oil-water separations with changes to their surface wetting properties. Zulfigar *et al.* deposited naturally available biowaste sawdust particles in combination with polychloroprene adhesive, carbon soot and silicone polymer on a stainless-steel (SS) mesh for oil-water separation. The polychloroprene adhesive was first applied on the SS mesh with a metal strip, then sawdust particles were applied with the help of a brush and the substrate was dipped in silicone solution. Carbon soot particles were deposited on the substrate by holding it over a flame and then dipping it in silicone solution to obtain a highly superhydrophobic and mechanically stable coating. The coated superhydrophobic SS mesh showed an oil separation efficiency of >90% for *n*-hexane, chloroform, toluene and dichloromethane. The coated mesh maintained its separation efficiency for five separation cycles and retained its superhydrophobic properties after mechanical abrasion.³¹ Chen et al. fabricated a superhydrophobic poly(ethylene terephthalate) (PET) mesh by dipping it in a solution of polydimethylsiloxane (PDMS) and fluorinated silica (F-SiO₂) for use in oil-water separation. In an investigation of the relation between oil-water separation efficiency and pore size of the mesh, they found that the pore size of the mesh had a significant impact on the oil-water separation ability. A smaller pore size resulted in a lower apparent surface energy of the superhydrophobic PET mesh.³² Singh *et al.* prepared a superhydrophobic copper mesh for oil-water separation by a fabrication process involving the oxidation of the copper mesh followed by low-pressure annealing at low temperature; the latter treatment enhanced the hydrophobicity of the mesh by the formation of a Cu₂O surface layer. The copper mesh was partially oxidized by treating it with hydrogen peroxide (H_2O_2) solution and then immersed in anhydrous ethanol for reduction, and eventually the copper mesh became superhydrophobic in nature. The structural morphology of the copper mesh changed during the treatment, as shown in Figure 16.3a. The scanning electron microscope (SEM) image in Figure 16.3b demonstrates that the during the oxidation and reduction process, the copper mesh became rougher. The pristine copper mesh showed a WCA of 120° and after oxidation and reduction the mesh had WCA values of 57 and 153°, respectively. The superhydrophobic mesh showed a separation efficiency of >99% for an oil-water mixture containing *n*-hexane, *n*-octane, *n*-decane, *n*-hexadecane and liquid paraffin. Even after 40 cycles of separation of an *n*-hexadecanewater mixture the mesh maintained a 99% separation efficiency.³³

Tudu and Kumar prepared superhydrophobic meshes (steel and copper) by dipping into a solution of a mixture of perfluorodecyltriethoxysilane

Figure 16.3 (a) Optical microscope (OM) images of pristine and treated (oxidation and reduction) copper meshes, the insets show the water drop images.
(b) SEM images of single Cu wire pristine and treated (oxidation and reduction) copper meshes. Reproduced from ref. 33 with permission from Elsevier, Copyright 2018.

(PFDTS) and TiO₂ nanoparticles (NPs). The superhydrophobic steel and copper mesh surfaces obtained exhibited WCA values of 161 ± 2 and $159 \pm 3^{\circ}$. respectively. The coated meshes retained their superhydrophobic properties even when exposed to extreme environmental conditions such as corrosive chemicals, high temperatures and mechanical disturbances and showed excellent self-cleaning ability. The copper mesh showed greater stability for oil-water (benzene and water) separations up to 100 cycles with a separation efficiency of 98%. The copper mesh separated oil-in-water (surfactant-free toluene-in-water) emulsions more efficiently than the steel mesh.³⁴ Varshney et al. synthesized a superhydrophobic/superoleophilic steel mesh using a chemical etching method. The mesh was immersed in mixture of hydrochloric acid and nitric acid, then washed with ethanol and distilled water and finally modified with lauric acid. The chemically modified mesh showed a WCA of $171 \pm 4.5^{\circ}$ and a separation efficiency of more than 99% for benzene-water and petroleum ether-water mixtures. The process for oil-water separation is shown in Figure 16.4.³⁵

Comparative results of ongoing research on meshes are presented in Table 16.1.

16.3.2 Superhydrophobic Sponges

A 3D porous sponge facilitates high liquid absorption and is one of the superior substrates in the separation of oil–water mixtures. Cho *et al.* prepared a superhydrophobic nanocomposite film by dipping melamine sponge in a

Figure 16.4 Experimental setup demonstrating the separation of petroleum ether and water. The water is coloured for ease of visualization. During separation, the ether penetrated through the coated mesh and water was retained on the coated mesh surface. Reproduced from ref. 35 with permission from the Royal Society of Chemistry.

blend of ormosil (organically modified silica) suspension and polymethylhydroxysiloxane followed by modification with perfluorooctyltriethoxysilane NPs to further improve the superhydrophobicity. The superhydrophobic sponge showed an absorption capacity of >80 g g⁻¹ for chloroform and excellent recycling performance of up to 20 cycles against chloroform, pump oil and hexane.³⁶ Peng *et al.* applied a PDMS layer on a melamine sponge by the dip-coating technique followed by UV irradiation to obtain a superhydrophobic sponge. The PDMS-coated melamine sponge showed a WCA of 156.2°, and absorbed oil and organic solvents up to 103–179 times its own weight.³⁷

Zou *et al.* fabricated superhydrophobic/superoleophilic high-density polyethylene (HDPE) aerogel-coated natural rubber latex foam (NRLF) for oil-water separation through a phase separation method. The HDPE aerogelcoated NRLF showed a porous structure and particle-like morphology with a WCA of >150°. The modified NRLF was an excellent absorbent against *n*-hexane and carbon tetrachloride.³⁸ Sun *et al.* prepared a superhydrophobic porous melamine sponge by immersion in lignin-hexadecyltrimethoxysilane (HDTMS) solution under sonication. The superhydrophobic melamine sponge showed a separation efficiency of >98.6% for different types of oilwater mixtures and excellent durability for 35 cycles of oil-water separation. The sponge showed a separation efficiency of >98.7% up to 100 cycles.³⁹ Liu et al. dip coated a sodium dodecylbenzene sulfonate-modified magnesium hydroxide particle suspension on melamine sponge. The coated sponge showed a WCA of $163 \pm 3^{\circ}$ and an OCA of 0° . The superhydrophobic/superoleophilic sponge exhibited excellent demulsification for immiscible oil-water mixtures, surfactant-free emulsions and surfactant-stabilized emulsions.40

Comparative results of ongoing research using sponges as substrates are given in Table 16.2.

shes for oil–water separation.
les
сn
ilii
lqo
ole
uper
ic/s
obi
hþh
drc
rhy
super
on
reports
ve
Representati
16
Je

Table 16.1 Representative reports or	n superhydr	ophobic/superol	eophilic meshes for oil-	-water separati	on.		
Materials	Mesh type	Method	Types of oil/organic solvent	WCA/o	Separation efficiency/%	Reusability/ cycles	Ref.
Sawdust, polychloroprene glue, RTV-1 silicone adhesive, paraffin wax candle	Steel	Dip coating	<i>n</i> -Hexane, toluene, chloroform, dichloromethane	155 ± 4	06	5	31
Silica NPs (20 nm), 1H,1H,2H,2H-per- fluorodecyltriethoxysilane, polydimethylsiloxane, prepolymer	PET	Two-step impregnation	Trichloromethane, kerosene, octane, <i>n</i> -decane, <i>n</i> -hexane	155.9 ± 1.0	98 for kerosene	I	32
Sodium <i>n</i> -dodecyl sulfate, <i>n</i> -hexadec- ane, polystyrene, poly(vinyl acetate), polytetrafluoroethylene (PTFE)	Copper	Oxidation and casting	<i>n</i> -Hexane, <i>n</i> -hexa- decane, <i>n</i> -octane, <i>n</i> -decane, liquid paraffin	~153	66<	40	33
Perfluorodecyltriethoxysilane (PFDTS), TiO ₂ NPs	Steel and copper	Dip coating	Benzene	Copper mesh 159 \pm 3 SS mesh 161 \pm 2	66	Copper mesh 80 SS mesh 50	34
HNO ₃ , HCl, ethanol, lauric acid	Steel	Chemical etching (<i>not</i> <i>a coating</i> <i>method</i>)	Petroleum ether, benzene	171 ± 4.5	66<	10	35

Table 16.2Representative rej	ports on super	hydrophobic/sup-	eroleophilic sponges for oil-w	ater separat	ion.		
Materials	Sponge type	Method	Types of oil/organic solvent	WCA/°	Absorption capacity/g g ⁻¹	Reusability/ cycles	Ref.
Methyltriethoxysilane, poly- methylhydroxysiloxane, triethoxy(octyl)silane, hexadecyltrimethoxysilane, triethoxyphenylsilane(phe- nylsilane), 1H,1H,2H,2H,2H	Melamine	Immersion	Methanol, ethanol, dimeth- ylformamide (DMF), <i>n</i> -hexane, dimethyl sulfox- ide, chloroform, acetone, pump oil, tetrahydrofuran, motor oil	168	35-82	30	36
Polynethylvinylsilicone with a vinyl content of 10 mol, pentaerythritol tetrakis(2-mercaptoacetate)	Melamine	Dip coating	Machine oil, silicone oil, pump oil, used pump oil, diesel oil, soyabean oil, cyclohexane, acetone, chloroform, DMF, ethyl	156.2	103-179	10	37
Natural rubber latex, high-den- sity polyethylene	Latex	Thermally induced phase senaration	Colza oil, silicone oil, <i>n</i> -hex- ane, toluene, carbon tetrachloride, acetone, chloroform, methanol	>150	5-7	40	38
Hardwood kraft lignin, hexadecyltrimethoxysilane	Melamine resin	Simple impregnation	Chloroform, <i>n</i> -hexane, petro- leum ether, methylben- zene neanut oil kerosene	162 ± 1.2	40-100	35	39
Magnesium hydroxide hexahy- drate, stearic acid, sodium dodecylbenzene sulfonate, sodium lauryl sulfate, cet- yltrimethylammonium bro- mide, poly(acrylic acid)	Melamine	Immersion	Vacuum pump oil, dichloro- methane, <i>n</i> -hexane, car- bon tetrachloride, toluene, edible oil, petroleum ether	163 ± 3	77-145	50	40

380

16.3.3 Superhydrophobic Cotton Fabrics

Cheng *et al.* prepared a fluorine-free superhydrophobic cotton fabric *via* the enzyme etching method and coated its surface with epoxidized soybean oil and stearic acid. The coated cotton fabric sustained its superhydrophobic property against mechanical abrasion, tape peeling, ultrasonication, chemical resistance and low/high-temperature treatments. The superhydrophobic cotton fabric showed an oil-water separation efficiency of 98%.⁴¹ Gao *et al.* prepared fabricated superhydrophobic coatings on 2D fabric and 3D sponge through a phase separation method. In this process, PDMS dissolved in tetrahydrofuran (THF) and water as a non-solvent was added for phase separation. The modified 2D or 3D porous substrates exhibited a good separation ability for various types of oil-water mixtures.⁴² Li et al. deposited a suspension of copper stearate (CS) and PDMS on various substrates such as iron, paper, glass, copper and fabric *via* spraying, dipping and brushing for the preparation of superhydrophobic surfaces. Among them, CS/PDMS-coated cotton effectively separated oil-water mixtures and oil-water emulsions. The prepared fabric showed high water repellency and oil absorbance ability. The process for the separation of oil-water mixtures is shown in Figure 16.5a. An emulsion was prepared with water and toluene. During the oil-water separation, the toluene was easily removed from the emulsion, as shown in Figure 16.5b.43

Talebizadehsardari *et al.* deposited a superhydrophobic nanocomposite of PDMS/silica NPs on cotton fabric by a dip-coating method. The superhydrophobic cotton fabric showed an effective separation efficiency of 97–99% for paraffin oil, toluene, hexane and a vegetable oil–water mixture. With respect to reusability, the superhydrophobic cotton fabric showed a separation efficiency of 95% even after 50 separation cycles.⁴⁴ Dong *et al.* prepared

Figure 16.5 (a) Photograph of the oil–water separation process using the coated fabric. (b) Optical micrographs of the emulsion before and after separation. Reproduced from ref. 43 with permission from Elsevier, Copyright 2020.

Table 16.3 Representative reports	on superhydrophobic/supe	eroleophilic fabrics for o	il-water sep	aration.		
Materials	Method	Types of oil/organic solvent	WCA/∘	Separation efficiency/%	Reusability/ cycles	Ref.
Epoxidized soybean oil, 1,8-diazab- icyclo[5.4.0]undec-7-ene, sebacic acid, stearic acid	Enzyme etching followed by surface coating and subsequent surface modification	Chloroform, toluene, cyclohexane, sili- cone oil, <i>n</i> -heptane, soybean oil, petro- leum ether	157.3	86	10	41
Tetrahydrofuran, hexadecane, polydimethylsiloxane	Phase separation	Dichloromethane	155.0	~ 100		42
Polydimethylsiloxane, copper ace- tate, stearic acid	Dipping, spraying, brushing	Toluene	154.9 ± 1	96	10	43
Hydroxyl-terminated polydimethyl- siloxane, tetraethyl orthosilicate, dibutyltin dilaurate, fumed silica with a specific surface area of	Dip coating	<i>n</i> -Hexane, paraffin oil, toluene, vegetable oil	156 ± 1	66-26	50	44
Dopamine hydrochloride, tris(hy- droxymethyl)aminomethane, stearic acid, copper(II) sulfate pentahydrate, hydrogen peroxide	Dip coating	Trichloromethane	162.0	~100	IJ	45

382

superhydrophobic cotton by applying polydopamine (PDA) followed by surface modification using stearic acid. The prepared sample exhibited a WCA of 162° and a sliding angle of 7.8°. The volume of water was measured before and after the oil–water separation and the separation efficiency was found to be ~100%.⁴⁵

Comparative results of recent studies on superhydrophobic cotton fabrics for oil–water separation are given in Table 16.3.

16.3.4 Superhydrophobic Membranes

Moatmed et al. prepared a free-standing and flexible nanofibrous superhydrophobic/superoleophilic membrane by electrospinning using Fe_3O_4 NPs embedded in polystyrene nanofibres for oil-water separation. The superhydrophobic membrane exhibited a WCA of 162° and showed a separation efficiency of 99.8% for hexane in a gravity-driven separation. It was reported that the superhydrophobic membrane showed a separation efficiency of 99.8% for low-density oils and 92% for high-density oils.⁴⁶ Ma *et al.* first obtained a free-standing polyimide (PI) nanofibrous hydrophilic membrane by the electrospinning technique. The PI membranes were immersed alternately in phytic acid solution and ferric chloride solution multiple times and finally immersed in octadecyltrimethoxysilane solution to obtain a superhydrophobic membrane. The superhydrophobic membrane showed a high efficiency in the separation of various oils, including dichloromethane, trichloromethane, dichloroethane, bromobenzene and carbon tetrachloride, from oilwater mixtures. The membrane maintained a separation efficiency of >99% along with a high separation flux of 8424×10^5 L m⁻² h⁻¹ even after 20 separation cycles.47

Wang et al. fabricated an ultrathin polytetrafluoroethylene fibrous membrane (UTPFM) using an electro-centrifugal spinning method. A tree-grape-like structure was observed on the membrane fibres. A schematic diagram of the process for the fabrication of the membrane is shown in Figure 16.6a. Figure 16.6b illustrates the growing process of tree grapes. The number and size of the grape structure depend on the concentration of polyvinylpyrrolidone (PVP)-polytetrafluoroethylene (PTFE) (Figure 16.6c). The sample names UTPFM-1, UTPFM-2, UTPFM-3 and UTPFM-4 are related to PVP: PTFE ratios of 1:6, 1:4, 1:2.5 and 1:1, respectively. Figure 16.6d-g show SEM images of the membrane with changes in the grape structure for different PVP: PTFE ratios. As the ratio of PVP to PTFE increases, a grape on the fibre surface becomes larger. The average diameter of the grapes varied as 0.6, 0.9, 1.4 and 1.8 μ m (Figure 16.6d–g). As the grapes became larger and more numerous, the membrane surface became rougher (Figure 16.6h-k). The optimized PVP-PTFE fibrous membrane showed high porosity along with a WCA of 154.6°. The membrane showed a permeability of 3200 L m⁻² h⁻¹ and a separation efficiency of 99% during gravity-driven separation. The membrane maintained its superhydrophobicity (with a WCA of 153.6°) after 1000 cycles of abrasion.48

Figure 16.6 (a) Schematic diagram of the fabrication process for UTPFM. (b) Growth of tree grapes. (c) Schematic diagram of the growing process of UTPFMs. SEM images of (d) UTPFM-1, (e) UTPFM-2, (f) UTPFM-3 and (g) UTPFM-4. (h–k) 3D surface morphology and roughness of UTPFMs. Reproduced from ref. 48 with permission from Elsevier, Copyright 2021.

Su *et al.* generated pine-needle-like titanium dioxide (TiO₂) nanorods (TNs) on poly(vinylidene fluoride-*co*-hexafluoropropylene) nanofibre (PNF) membranes *via* a hydrothermal process and then modified them using 1*H*,1*H*,2*H*,2*H*-perfluorodecyltriethoxysilane (PFDS) to obtain a superhydrophobic PNF@TNsPFDS membrane. The PNF membrane was prepared by solution blow spinning (SBS), and its surface morphology is shown in Figure 16.7a. The purpose of SBS is to generate a high-speed airflow to compress and elongate the solution drop, which subsequently solidifies into nanofibres after the solvent has evaporated. The TNs were generated by a two-step

Figure 16.7 SEM images of (a) pristine PNFs, (b and c) growth of TCs and TNs on PNFs, respectively, and (d) PNF@TNsPFDS fibres. Reproduced from ref. 49 with permission from Elsevier, Copyright 2021.

hydrothermal process: in the first step TiO_2 crystals (TCs) were grown and in the second step nanorods (TNs) were formed. The growth of TiO_2 crystals and TNs can be seen in Figure 16.7b and c, respectively. Figure 16.7d indicates that the PFDS modification did not affect the surface structure. The membrane exhibited a WCA of 155.0° and an OCA of 0°. The superhydrophobic membrane showed a separation efficiency of 99.99% for different types of oils such as dichloromethane, *n*-hexane, toluene and kerosene.⁴⁹

Zareei Pour *et al.* fabricated superhydrophobic/superoleophilic electrospun poly(vinylidene fluoride) (PVDF) membranes followed by chemical vapour deposition of dichlorodimethylsilane. The prepared membrane showed high water repellency and breathability and oil sorption and oil–water separation properties. The nanofibrous membranes showed an oil– water separation efficiency of 100.0, 93.7, 23.3, 35.0 and 100.0% for *n*-hexane, kerosene, crude oil, frying oil and toluene–water mixture, respectively.⁵⁰

Comparative results of recent studies on superhydrophobic nanofibrous membranes for oil–water separation are given in Table 16.4.

16.4 Conclusions and Outlook

This chapter has addressed the most recent progress in the fabrication of superhydrophobic/superoleophilic coatings on common substrates, such as meshes, sponges, cotton textiles and membranes, for oil-water separation applications. The most commonly used fabrication techniques for achieving a superhydrophobic surface were briefly discussed. It is concluded that

Table 16.4Representative reports on	superhydrophobic/s	uperoleophilic membranes for c	oil-water sep	oaration.		
Materials	Method	Types of oil/organic solvent	WCA/o	Separation efficiency/%	Reusability/ cycles	Ref.
Polystyrene and Fe ₃ O ₄ nano-powder with ~50 nm particle size	Electrospinning	<i>n</i> -Hexane, petroleum ether, gasoline oil, olive oil, ses- ame oil	162	99.8	50	46
Ferric chloride hexahydrate, octade- cyltrimethoxysilane, phytic acid, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, <i>p</i> -phenylenediamine	Electrospinning	DCM (dyed with Sudan III for easy observation), trichloro- methane, dichloroethane, bromobenzene, carbon tetrachloride	154.73 ± 1.8	66	20	47
PTFE, polyvinylpyrrolidone, poly(vinyl alcohol)	Electro-centrifugal spinning	Water-in-0.65 mm ² s ⁻¹ and water-in-5 mm ² s ⁻¹ silicone oil emulsion	154.6	66<	200	48
Poly(vinylidene fluoride- <i>co</i> -hexafluo- ropropylene), 1 <i>H</i> ,1 <i>H</i> ,2 <i>H</i> ,2 <i>H</i> -perflu- orodecyltriethoxysilane, tetrabutyl titanate	Two-step hydrothermal	Dichloromethane, <i>n</i> -hexane, toluene, kerosene	155.0	66.66	10	49
Poly(vinylidene fluoride), dichlorodimethylsilane	Electrospinning technique and chemical vapour deposition	<i>n</i> -Hexane, kerosene, crude oil, frying oil, toluene	152.0 ± 2.5	100.0 for toluene	10	50

386

superhydrophobic/superoleophilic meshes, sponges, cotton textiles and membranes exhibit outstanding oil and water separation from oil-water mixtures and emulsions. Metal mesh is a ductile, porous and durable substrate whereas cotton textiles and membranes are highly flexible and porous and superhydrophobicity could be easily achieved by depositing a functional material because they have pre-existing hierarchical surface structures. Three-dimensional sponges demonstrated a capability for high-volume liquid absorption, hence superhydrophobic/superoleophilic sponges easily remove oil from oil-water mixtures.

Despite the substantial progress made in these areas, there are still some obstacles to be addressed in future research:

- 1. The hierarchical nano/microstructure is damaged under harsh conditions that affect the wetting properties.
- 2. Repetition of the oil-water separation process can block the pores of the substrate, consequently reducing the separation efficiency.
- 3. Functional materials become detached from the substrate during repeated oil-water separation.
- 4. Fabrication costs should be lowered for large-scale production.
- 5. Maintaining the surface properties for the separation of low- and high-viscosity oils is challenging.

Acknowledgements

This work was financially supported by the DST – INSPIRE Faculty Scheme, Department of Science and Technology (DST), Government of India (DST/INSPIRE/04/2015/000281).

References

- 1. R. K. Gupta, G. J. Dunderdale, M. W. England and A. Hozumi, *J. Mater. Chem. A*, 2017, 5, 16025–16058.
- 2. S. S. Latthe, C. Terashima, K. Nakata, M. Sakai and A. Fujishima, *J. Mater. Chem. A*, 2014, **2**, 5548–5553.
- 3. S. Wang, K. Liu, X. Yao and L. Jiang, Chem. Rev., 2015, 115, 8230–8293.
- 4. E. Vazirinasab, R. Jafari and G. Momen, *Surf. Coat. Technol.*, 2018, **341**, 40–56.
- 5. L. Li, B. Li, J. Dong and J. Zhang, J. Mater. Chem. A, 2016, 4, 13677–13725.
- Z. Liu, H. Wang, X. Zhang, C. Wang, C. Lv and Y. Zhu, *Chem. Eng. J.*, 2017, 326, 578–586.
- 7. J.-W. Lee and W. Hwang, *Mater. Lett.*, 2016, **168**, 83–85.
- 8. M. Xiong, Z. Ren and W. Liu, Cellulose, 2019, 26, 8951–8962.
- 9. K.-M. Lee, H. Park, J. Kim and D.-M. Chun, *Appl. Surf. Sci.*, 2019, **467**, 979–991.

- 10. G. Polizos, G. G. Jang, D. B. Smith, F. List, M. G. Lassiter, J. Park and P. G. Datskos, *Sol. Energy Mater. Sol. Cells*, 2018, **176**, 405–410.
- 11. Z. Chen, L. Hao, A. Chen, Q. Song and C. Chen, *Electrochim. Acta*, 2012, **59**, 168–171.
- 12. S. Rasouli, N. Rezaei, H. Hamedi, S. Zendehboudi and X. Duan, *Mater. Des.*, 2021, **204**, 109599.
- 13. J. Xue, T. Wu, Y. Dai and Y. Xia, Chem. Rev., 2019, 119, 5298–5415.
- 14. C. Luo, S. D. Stoyanov, E. Stride, E. Pelan and M. Edirisinghe, *Chem. Soc. Rev.*, 2012, **41**, 4708–4735.
- 15. N. Ashammakhi, I. Wimpenny, L. Nikkola and Y. Yang, *J. Biomed. Nano*technol., 2009, 5, 1–19.
- 16. D. Hetemi and J. Pinson, Chem. Soc. Rev., 2017, 46, 5701-5713.
- 17. M. A. Aegerter and M. Mennig, *Sol-gel Technologies for Glass Producers and Users*, Springer Science & Business Media, 2013.
- 18. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu and J. P. Hill, *Chem. Lett.*, 2014, **43**, 36–68.
- 19. T. Ogawa, B. Ding, Y. Sone and S. Shiratori, *Nanotechnology*, 2007, 18, 165607.
- 20. J. J. Richardson, M. Björnmalm and F. Caruso, Science, 2015, 348, aaa2491.
- 21. X. Tang and X. Yan, J. Sol-Gel Sci. Technol., 2017, 81, 378–404.
- 22. J. Puetz and M. Aegerter, *Sol-gel Technologies for Glass Producers and Users*, 2004, pp. 37–48.
- 23. H. Kaur, V. K. Bulasara and R. K. Gupta, *Carbohydr. Polym.*, 2018, **195**, 613–621.
- 24. B. Nandi, R. Uppaluri and M. Purkait, J. Membr. Sci., 2009, 330, 246–258.
- 25. M. Tawalbeh, A. Al Mojjly, A. Al-Othman and N. Hilal, *Desalination*, 2018, 447, 182–202.
- 26. Z. Hu, J. Zhang, S. Xiong and Y. Zhao, Org. Electron., 2012, 13, 142–146.
- 27. F. Aziz and A. F. Ismail, Mater. Sci. Semicond. Process., 2015, 39, 416-425.
- 28. A. Makhlouf, in *Nanocoatings and Ultra-thin Films*, Elsevier, 2011, pp. 3–23.
- 29. T. Darmanin, E. T. de Givenchy, S. Amigoni and F. Guittard, *Adv. Mater.*, 2013, **25**, 1378–1394.
- 30. I. Gurrappa and L. Binder, Sci. Technol. Adv. Mater., 2008, 9, 043001.
- 31. U. Zulfiqar, S. Z. Hussain, T. Subhani and I. Hussain, *Colloids Surf., A*, 2018, **539**, 391–398.
- 32. H. Chen, Y. Shen, Z. He, Z. Wu and X. Xie, *J. Mater. Sci. Technol.*, 2020, **51**, 151–160.
- 33. V. Singh, Y.-J. Sheng and H.-K. Tsao, *J. Taiwan Inst. Chem. Eng.*, 2018, **87**, 150–157.
- 34. B. K. Tudu and A. Kumar, Prog. Org. Coat., 2019, 133, 316-324.
- 35. P. Varshney, D. Nanda, M. Satapathy, S. S. Mohapatra and A. Kumar, *New J. Chem.*, 2017, **41**, 7463–7471.
- 36. E.-C. Cho, C.-W. Chang-Jian, H.-C. Chen, K.-S. Chuang, J.-H. Zheng, Y.-S. Hsiao, K.-C. Lee and J.-H. Huang, *Chem. Eng. J.*, 2017, **314**, 347–357.

- 37. J. Peng, J. Deng, Y. Quan, C. Yu, H. Wang, Y. Gong, Y. Liu and W. Deng, *ACS Omega*, 2018, **3**, 5222–5228.
- 38. L. Zou, A. D. Phule, Y. Sun, T. Y. Zhu, S. Wen and Z. X. Zhang, *Polym. Test.*, 2020, **85**, 106451.
- 39. H. Sun, Z. Liu, K. Liu, M. E. Gibril, F. Kong and S. Wang, *Ind. Crops Prod.*, 2021, **170**, 113798.
- 40. S. Liu, Q. Zhang, L. Fan, R. Wang, M. Yang and Y. Zhou, *Ind. Eng. Chem. Res.*, 2020, **59**, 11713–11722.
- 41. Q.-Y. Cheng, X.-L. Zhao, Y.-X. Weng, Y.-D. Li and J.-B. Zeng, *ACS Sustainable Chem. Eng.*, 2019, 7, 15696–15705.
- 42. S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen and Y. Lai, *Chem. Eng. J.*, 2018, **333**, 621–629.
- 43. L. Li, J. Zhu and Z. Zeng, Prog. Org. Coat., 2020, 147, 105863.
- 44. P. Talebizadehsardari, J. Seyfi, I. Hejazi, A. Eyvazian, M. Khodaie, S. Seifi, S. M. Davachi and H. Bahmanpour, *Colloids Surf.*, *A*, 2020, **603**, 125204.
- 45. X. Dong, S. Gao, J. Huang, S. Li, T. Zhu, Y. Cheng, Y. Zhao, Z. Chen and Y. Lai, *J. Mater. Chem. A*, 2019, 7, 2122–2128.
- 46. S. M. Moatmed, M. H. Khedr, S. El-Dek, H.-Y. Kim and A. G. El-Deen, *J. Environ. Chem. Eng.*, 2019, 7, 103508.
- 47. W. Ma, M. Zhang, Z. Liu, C. Huang and G. Fu, *Environ. Sci.: Nano*, 2018, 5, 2909–2920.
- 48. A. Wang, X. Li, T. Hou, Y. Lu, J. Zhou, X. Zhang and B. Yang, *Sep. Purif. Technol.*, 2021, 275, 119165.
- 49. Y. Su, T. Fan, H. Bai, H. Guan, X. Ning, M. Yu and Y. Long, *Sep. Purif. Technol.*, 2021, **274**, 119098.
- 50. F. Zareei Pour, M. M. Sabzehmeidani, H. Karimi, V. M. Avargani and M. Ghaedi, *J. Appl. Polym. Sci.*, 2019, **136**, 47621.