"Dissemination of Education for Knowledge, Science and Culture"
- Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Empowered Autonomous)

DEPARTMENT OF MICROBIOLOGY

M.Sc. Part - II Semester-III & IV

SYLLABUS

NEP 2020

Academic Year 2024-25

Syllabus for the Master of Science in Microbiology M. Sc. II (Semester III & IV) Applicable For Academic Year: 2024 - 2025

- 1. Title: M. Sc. Microbiology, Vivekanand College, Kolhapur (Empowered Autonomous)
- 2. Faculty: Faculty of Science and Technology.
- 3. Year of Implementation: 2024-25
- 4. Programme Outcomes (POs): After completing the M. Sc. Programme, the students will be able to:
 - PO1: Demonstrate and apply the fundamental knowledge of the basic principles of sciences in various fields.
 - PO2: Create awareness and a sense of responsibility towards the environment and society to solve the issues related to environmental pollution.
 - PO3: Apply their professional, social, and personal knowledge.
 - PO3: Competent to pursue research or pursue a career in the subject.
 - PO4: Apply knowledge to build up small-scale industries for developing endogenous products.
 - PO5: Communicate scientific information in a clear and concise manner both orally and in writing.
 - PO6: Inculcate logical thinking to address a problem and become result oriented with a positive attitude.

Programme Specific Outcomes

- 1) To acquaint the students with the basic as well as advanced concepts in Microbiology.
- 2) To make aware the students about the importance of the subject in daily life.
- 3) To improve the laboratory skills of the students.
- 4) To prepare students for further studies helping in their bright career in the subject
- 5) To make students knowledgeable with industrial processes
- 6) To encourage the students to think the application of the subject studies for progression of mankind.

Department of Microbiology **Departmental Teaching and Evaluation Scheme** 2024-25

Microbiology M. Sc. II Semester III & IV

Sr. No.	Course Course code Course Name Hours/week Examination Scheme and M								Course								
L	Abbr.	br. Course watte	TII	PR	ESE	CIE	PR	Marks									
Sem	ester-III																
1	DSC-V	DSC20MIC31	Agricultural Microbiology and Phytopathology	4		80	20	-	100	4							
2	DSC-VI	DSC20MIC32	Enzymology And Enzyme Technology	4		80	20		100	4							
		DSE20MIC31	Quality Control Microbiology 1														
3	DSE-III	DSE20MIC32	Fermentation Technology	4		80	20		100	4							
		DSE20MIC33	Biostatistics, Bioinformatics And Scientific Writing														
4	DSC-PR-III	DSE20MIC39	Microbiology Lab-III	-	12			150	150	6							
5	RPR-I	RPR20MIC31	Research Project		4	-	-	100	100	4							
Sen	ester-III Tot	al Full transfer		12	16	240	60	250	550	22							
Seme	ester-IV			VIII V													
ι	DSC-VII	DSC20MIC41	Food And Dairy Microbiology	4		80	20		100	4							
?	DSC-VIII	DSC20MIC42	Industrial Waste Management	4		80	20	-	100	4							
		DSE20MIC41	Recombinant DNA Technology	4	4												
1	DSE-IV	DSE20MIC42	Quality Control Microbiology II			4	4 -	-	80	20	-	100	4				
	<i>I</i>	DSE20MIC43	Environmental Microbiology														
	DSC-PR-IV	DSC20M1C49	Microbiology Lab-IV		8	•	-	100	100	4							
	RPR-II	RPR20MIC41	Research Project	•	6		-	150	150	6							
Sem	ester-IV Tota			12	14	240	60	250	550	22							
10.5																	

Abbreviations: TH-Theory, PR-Practical, RPR- Project, ESE- End Semester Examination,

CIE-Continuous Internal Examination

Note:

1. Passing percentage will be 40%

2. Separate passing for each Head - ESE, CIE and Practicals

SEMESTER-III

DSC20MI	AGRICULTURAL MICROBIOLOGY AND	No. of
C31	PHYTOPATHOLOGY	Hours
	Theory: 60 Hours (Credits - 4)	per unit/
		credit
	On completion of the course, the students will be able to:	
	CO 1 Understand scope of agricultural Microbiology and	
	microflora of soil and their importance in agricultural	
	Microbiology	
	CO 2 Know about biofertilizers and biopesticides	
	CO 3 Describe various plant diseases and their control	
	CO 4 Explain interactions of plants pathogens with host and	
	defense mechanisms in plants	
Unit I	Historical development, scope and concept of soil and agricultural	15/1
	Microbiology.	
	2. Distribution of microorganisms in soil, their importance in	1
	maintaining soil fertility, factors affecting soil microflora.	
	3. Microbes and bio-geochemical cycles (nitrogen,	
	carbon, sulfur & phosphorous).	
	4. Microflora of rhizosphere, phyllosphere and spermosphere, R/S	
	ratio; Nitrogen fixing bacteria (Rhizobium, Azotobacter,	
	Azospirillum and blue green algae) and phosphate solubilizing	
	microbes (bacteria, fungi) and mycorrhiza.	
Unit II	1. Screening, selection of potential strains on the basis of plant growth	15/1
	promoting activities- Solubilization of nutrients, plant hormone	
	synthesis	
	large scale production of bacterial, blue green algal and fungal fertilizers.	
	3. Methods of application and evaluation of biofertilizers.	
	4. Biopesticides- Bacterial - Bacillus sphericus;	
	Fungal - Culicinomyces, langenidium and Coelomomyces; NPV of	
	Heliothissps,	

	5. Development of genetically modified crop plants for control insect	
	pests, Bt cotton; Transgenic crop plants.	
	6. Plant pathogen interaction - positive and negative integrations	
Unit III	1. Diseases caused by Bacteria- fire blight of apple, potato scab, citrus	15/1
	canker, lethal yellowing of coconut	
	2. Diseases caused by Fungi- powdery scab of potato, damping off, lite	
	blight of potato, downy mildews of pearl millet, grapes, Fusarium	
	wilt of tomato, blast disease of rice, stem rust of wheat, corn smuts;	
	Mycoplasma-	
	3. Biological control, its importance in crop pests and disease	
	management,	
	4. Merits and demerits of biological control	
Unit IV	Parasitism and Disease Development Parasitism and pathogenicity	15/1
	2. Host range of pathogens, Disease triangle, Diseases cycle / Infection	
	cycle, Relationship between disease cycles and epidemics;	
	Pathogens Attack Plants - Mechanical forces, Microbial enzymes	
	and toxins	
	3. Effect of pathogens on physiology of host - Photosynthesis,	
	Translocation, transpiration, Respiration, Permeability,	
	Transcription and translation. Environment and Plant Disease.	
	4. Defense Mechanisms of Plant: Disease Pre-existing structural and	
	chemical defenses, Induced structural and biochemical defenses	
	REFERENCE BOOKS	_
	1. Subba Rao. 2000. Soil Microbiology. 4th Ed. Oxford & IBH	
	2. Subba Rao. Biofertilizers in Agriculture. Oxford & IBH	
5* ±	3. Subba Rao. Recent Advances in Biological Nitrogen Fixation. Oxford	
	& IBH.	
	4. Rangaswamy and Bagyraj. Agricultural Microbiology.	
	5. Alexendra and Bold. 1999. Introduction to Mycology. Academic	
	Press.	
177	6. Sundara Rajan S. Practical Manual of Fungi. Anmol Publication.	
	7. Saminathan M.S. Biotechnology in Agriculture. McMillan.	
	8. Steinhaus. 1963. Insect Pathology. Vol I & II. Academic Press, New	

	York.	
8	9. Burges H D & Hussey N W. 1971. Microbial Control of Insect and	
	Mites. Academic Press, New York.	
	10. Burges H D. 1970-1980. Microbial Control of Pests and Plant	-
	Diseases.	
	11. Plant pathology. By George Agrios; academic press New York.	
	12. Microbial Ecology: Fundamentals and Applications by Rinald Atlas	
	and Richard Bartha; Benjamin/Cummings Science Publis., 2725	
	Sand Hill Road, Menlo Park, California 94025, USA.	
	13. Plant pathology. By George Agrios; academic press New York	
DSC20MI	ENZYMOLOGY AND ENZYME TECHNOLOGY	No. of
C32		Hours
		per unit/
	*	credit
	On completion of the course, the students will be able to:	
4.	CO 1 Explain history, properties, classification, structure, and	
	specificity of enzymes	
	CO 2 Describe enzyme kinetics	
	CO 3 Elucidate structural modifications and types of enzymes	
	CO 4 Narrate various applications of enzymes	
Unit I	1. History and special properties of enzymes as catalysts	15/1
	2. IUB system of nomenclature and classification of enzymes	
	3. Specificity of enzymes:	
	Types: - substrate and product, group or relative, absolute -	
	stereochemical and spatial specificity	
	Theories to explain specificity - Lock and Key and Induced Fit	
	hypotheses	
- 4	4. Structure of enzymes: monomeric and oligomeric enzymes,	
	Conceptof the Active Site	
	5. Methods employed to identify functional groups in the active	
	site - trapping of the intermediate, use of substrate	

	analogues, modification of amino acid side chains, some	
	common functional groups and amino acids, chemistry of the	
	active site	
	6. Co-factors in enzyme action:	
	Organic - prosthetic groups, coenzymes and cosubstrates	
	Inorganic – metal ions in enzyme function, metal	
	activated enzymes and metallo- enzymes, ternary	
	complexes	
Unit II	Kinetics of single-substrate enzyme catalysed reactions –	15/1
	Wilhelmy's and Brown's work, Henri and Michaelis-Menten	
	relationships, Briggs and Haldane assumption	
	and derivation, Lineweaver- Burk, Eadie-Hofstee, Hanes and	
	Eisenthal and Cornish-Bowden modifications of the M-M	
	Equation oderive KM, Significance of the M-M equation	
	and KM	
	2. Kinetics of multisubstrate reactions	
	3. Haldane's relationship for reversible reactions	
	4. Sigmoid kinetics - Hill and Adair equations for cooperativity	
	5. Enzyme inhibition: basic concepts, kinetics, examples	
	and significance of reversible and irreversible	
	inhibition	
Unit III	Covalent modification of enzyme structure – irreversible and	15/1
	reversible modification	-
	2. Ligand induced conformational changes - basic concepts of	
	allosterism and allosteric enzymes, models proposed to	
	explain the mechanism of functioning (MWC and KNF);	
	structural aspects of aspartate carbamoyltransferase, role of	
	allosteric enzymes in metabolic regulation - feedback	
	inhibition	
	3. Multienzyme systems – basic concepts, types with examples,	
		200

	structural and functional aspects of pyruvate dehydrogenase,	
	fatty acid synthetase, 'Arom' complex and tryptophan	
	synthetase	
	4. Membrane bound enzymes in metabolic regulation	
	5. Isoenzymes - basic concepts, method of detection, examples and	
	their metabolic significance	
Unit IV	Applications of enzymes in medicine:	15/1
	In diagnosis - general principles and use of alanine	
	amino transferase, aspartate aminotransferase, lactate	
	dehydrogenase, creatine kinase, acid and alkaline	
	phosphatase	
	In therapy - specific applications of few selected enzymes,	
	prodrug activation with examples, enzyme replacement	
	therapy	
	In forensic science - specific applications of few selected	
	enzymes	
	2. Industrial applications of enzymes - catalysts in the	
	manufacturing and other conversion processes	
	3. Enzymes as analytical tools	
	4. Immobilization of enzymes: basic concepts, methods used,	
	properties of IME and their applications in industry, medicine,	
	enzyme electrodes	
	5. Newer approaches to the application of enzymes – reactions in	
	organic solvents	
	REFERENCE BOOKS:	
	1. Enzymes: Biochemistry, Biotechnology, Clinical	
	Chemistry by T. Palmer Affiliated East-West Press Pvt.	
	Ltd. New Delhi	
	2. Fundamentals of Enzymology - N. C. Price and L.	
	Stevens, Oxford University Press	

CO 1 Describe fermentation equipment and its uses CO 2 Explain fermentation economics and patents CO 3 Explain control of different metabolic pathways, Contamination and computer applications in fermentation technology CO 4 Produce vitamins, organic acids, beverages, and vaccines 1. Basic functions of a fermenter, body construction, aeration,	15/1
CO 1 Describe fermentation equipment and its uses CO 2 Explain fermentation economics and patents CO 3 Explain control of different metabolic pathways, Contamination and computer applications in fermentation technology	
CO 1 Describe fermentation equipment and its uses CO 2 Explain fermentation economics and patents CO 3 Explain control of different metabolic pathways,	
CO 1 Describe fermentation equipment and its uses CO 2 Explain fermentation economics and patents	
CO 1 Describe fermentation equipment and its uses	
i a communication in the desire to:	
On completion of the course, the students will be able to:	
	credit
	per unit/
	Hours
FERMENTATION TECHNOLOGY	No. of
Biotech Books, Delhi	
Publications	
7. Immobilised Enzymes - M. D. Trevan	
2.	
•	
	 11. Enzyme Reaction Engineering by T. P. Jayadev Reddy, Biotech Books, Delhi 12. Enzymes and Immobilised Cells in Biotechnology by A. Laskin Butterworths Biotechnology Series FERMENTATION TECHNOLOGY

	2. Design of other fermentation vessels: Airlift fermenter, tower	
	fermenter Continuous fermenter, fedbatch fermenter, Waldhof	
	type fermenter	
12	3. Sterilization of fermentation equipment, air and media	
	4. Fermentation broth rheology and power requirements,	
	concepts of Newtonian and non- Newtonianfluids, plastic	
	fluids, effect of rheology on heat and oxygen transfer,	
	Reynold's number, power number, aeration number and	
	apparent viscosity	
Unit II	1. Fermentation media- Types of of fermentation media,	15/1
	sources of carbon, nitrogen trace elements, growth factors,	
	precursors, buffers, antifoam agents, sterilization of media,	
	screening for fermentation media.	
	2. Fermentation economics - A case study, market potential for	
1	product and fermentation, product recovery cost,	
	Entrepreneurship, plan for industry, product selection	
	process, site selection, finance, feasibility, excise and legal	
	aspects	
	3. Patents – Introduction, composition of patent, background,	
	patent practice and problems	
Unit III	Environmental control of metabolic pathways	15/1
	2. Genetic Control of Metabolic pathways	
	3. Growth and product formation: Concept of primary and	
	secondary metabolites and their control, kinetics of growth and	
	product formation (growth rate, yield coefficient, efficiency),	
	economics	
	Contamination problems in fermentation industry	
	5. Computer applications in fermentation technology- General	
Unit IV	applications and specific applications Industrial production of:	
		15/1
	Lactic starter culture for food fermentations	

- 2. Vitamin-B12
- 3. Gluconic acid
- Distilled alcoholic beverages Whisky and Brandy
- 5. Bacterial vaccines

REFERENCE BOOKS:

- Industrial Microbiology by L. E. Casida, John Wiley and Sons INC
- Annual Reports on Fermentation processes Vol. I and II by D. Perlman, Academic press INC
- Prescott and Dunn's Industrial Microbiology, 4th edition (1982)
 by Gerald Reed
- Food processing: Biotechnological applications by S. S.
 Marwaha and J. K. Arora (2000), Asiatech publishers INC
- Microbial technology Vol. I and II by H. J. Peppler and D. Perlman Academic Press INC
- Principals of Fermentation Technology by P. Stanbury and A. Whitaker, Pergamon Press
- Essays in Applied Microbiology by J. R. Norris and M. H. Richmond, John Wiley and Sons, Chicester, New York
- Biology of Industrial Microorganisms by A. Demain and N. Solomon Butterworths Biotechnology Series
- Overproduction of Microbial Metabolites: Strain Improvement and Process Control strategies by Z. Vanek and Z. Hostalek Butterworths Biotechnology Series
- Fermentation Microbiology and Biotechnology by E. M. T. El-Mansi and C. F. A. Bryce Taylor and Francis Ltd. London
- Legal protection for Microbiological and Genetic Engineering Inventions by R. Saliwanchik Butterworths Biotechnology Series
- 12. Methods in Industrial Microbiology by B. Sikyta,

	Ellis Horwood Ltd. Chichester (1983) Industrial	
	Microbiology by A. H. Patel, MacMillan India Ltd.	
	13. Principals of fermentation technology by P. Stanbury and A.	
	Whitaker, Pergamon Press	
	14. Advances in Applied Microbiology Vols. 9 and 13, by W. W.	
	Umbreit, Academic Press, New York	
	15. Essays in Applied Microbiology by J. R. Norris and M.	_
	H. Richmond, John Wiley and Sons, Chicester, New	
	York	
DSE20MI	QUALITY CONTROL MICROBIOLOGY -I	No. of
C32		Hours
25		per unit,
	*	credit
	On completion of the course, the students will be able to:	
	CO 1 Evaluate biosafety levels of laboratories	
	CO 2 Explain good microbiological laboratory techniques	
3	CO 3 Describe various techniques of microbial control	
	CO 4 Explain biosafety guidelines	
Unit I	Design of Basic laboratories – Biosafety Levels 1 and 2 - Code of	15/1
	practice; Laboratory design and facilities; Laboratory	
	equipment; Health and medical surveillance; Training; Waste	
	handling; Chemical, fire, electrical, radiation and equipment	
	safety	
	2. The containment laboratory - Biosafety Level 3 - Code of	
	practice; Laboratory design and facilities; Laboratory	
	equipment; Health and medical surveillance	
	3. The maximum containment laboratory – Biosafety Level 4 -	
	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
I-SA TT	Code of practice; Laboratory design and facilities	
Unit II	1. Good microbiological techniques - Good microbiological	15/1
	laboratory techniques - Safe handling of specimens in the	

	laboratory; Use of pipettes; Avoiding the dispersal of	
	infectious materials	
	2. Use of biological safety cabinets; Avoiding ingestion of	
	infectious materials and contact with skin and eyes	
	3. Opening of ampoules containing lyophilized infectious	
	materials; Storage of ampoules containing infectious materials	
	4. Standard precautions with blood and other body fluids,	
	tissues and excreta	
	5. Contingency plans and Emergency procedures for	
	microbiological laboratories.	
Unit III	1. Sterilization and sterility assurance - Microbial Control by	15/1
	Physical and Chemical Methods- Introduction; Physical	12
	Methods; 2. Chemical Methods	
	2. Experimental Parameters Influencing the Antimicrobial Agent	5
	Activity	
	3. Sterilization monitors - Physical indicators, Chemical	
	indicators, biological indicators	
	4. Sterility assurance and the sterility assurance level	
	5. Sterility Testing of Pharmaceutical Products - Introduction;	
	Test for Sterility: Pharmaceutical Products - Membrane	
	Filtration; Direct Inoculation - Nutrient Broth; Cooked Meat	4
	Medium and Thioglycolate Medium; Sabouraud Medium;	
	Sterile products	
	6. Sterilization Factors affecting sterilization effectiveness	
Unit IV	Biosafety Guidelines - Microbiological risk assessment	15/1
	2. Biological safety cabinets - Class I biological safety cabinet;	
90	Class II biological safety cabinets; Class III biological safety	
	cabinet	
	3. Biological safety cabinet air connection; Selection of a	
	biological safety cabinet; Using biological safety cabinets in	
	the laboratory	

	4. Safety equipment - Negative-pressure flexible-film isolators;	
	Pipetting aids; Homogenizers, shakers, blenders and	
	sonicators; Disposable transfer loops; Micro incinerators;	
	Personal protective equipment and clothing.	
	REFERENCE BOOKS:	
	1. Geoff Hanlon and Norman Hodges -Essential	
-	Microbiology for Pharmacy and Pharmaceutical Science,	
	John Wiley & Sons, Ltd.	
	2. Tim Sandle - Pharmaceutical Microbiology - Essentials for	
	Quality Assurance and Quality Control, Woodhead	
	Publishing publications, Elsevier.	
	3. Laboratory biosafety manual 3rd ed. WHO Library	
	4. Cataloguing-in-Publication Data ISBN 9241546506.	
	5. Environmental Monitoring for cleanrooms and Controlled	
	environments by Anne	
	6. MarieDixon, Informa Healthcare Newyork, London, ISBN	
	13; 978-0-8247-2359-0.	
	7. Cleanroom Microbiology for the non-Microbiologists,	
	8. Second Ed, by Devid M. Carlbarg, CRC Press, USA	
DSE20MI	BIOSTATISTICS, BIOINFORMATICS AND SCIENTIFIC	
C33	WRITING	
	On completion of the course, the students will be able to:	
	CO 1 Describe the method to collect samples, design the	
	experiments, apply the measures of central tendency	
	CO 2 Explain the concept of hypothesis testing, ANOVA,	
	correlation and regression	
	CO 3 Describe components, objectives, and applications of bioinformatics	
*	CO 4 Construct scientific documents, present and publish research papers, acknowledge legal aspects of scientific authorship	

Unit I	1. Basic concepts: definitions-statistics and biostatistics,	15/1
	population, sample, variable and the various types,	
	statistic and parameter.	1
	2. Collection and presentation of data: primary and secondary	
	data, collection of data - enumeration and measurement,	
	significant digits, rounding of data, accuracy and precision,	
	recording of data. Tabular and diagrammatic presentation -	
	arrays, frequency distribution, bar diagrams, histograms and	
	frequency polygons.	
	3. Descriptive statistics: measures of central tendency,	
	dispersion, skewness and kurtosis	
	4. Probability: definition, elementary properties, types, rules,	
	Applications to Biological problems, distributions-	
	Binomial, Poisson, Normal, chi-square(χ2) distribution	
	and test.	
	5. Sampling methods: principles of sampling, necessity-Merits	
	and demerits, random sampling-lottery,	
	geographical arrangement random number; deliberate or	
	non-random sampling, stratified sampling, cluster	
	sampling.	
Unit II	1. Inference about populations: sample size, sampling	15/1
	distribution, standard error, estimation of population	,
	mean-confidence interval, Students distribution and its	
	applications (t-test).	
	2. Hypothesis testing: definition of hypothesis, hypotheses-	
	null and alternate hypotheses, general procedure, decision	
	about H0: - one-tailed and two-tailed tests, type I and type II errors	
	3. Analysis of Variance (ANOVA): basic concepts,	
	experimental designs - CRD, RBD, factorial experiment,	

	repeated measures, other designs, general method, F-test,	
	multiple comparison tests.	
	4. Correlation: introduction, types, methods of study-	
	Scatter diagram, correlation graph, Karl Pearson's	
	coefficient of correlation and its interpretation, test of	
	significance.	
	5. Regression: Introduction, simple linear regression-model,	,
	equation, least-squares line, evaluating and using the	
	equation, multiple regression - model, obtaining, evaluating	
	and using the multiple regression equation.	
Unit III	1. Definition, components, objectives, databases- definition,	15/1
	biological databases, types and examples, data base	
	management systems (DBMS)	
	2. Applications of bioinformatics - I: Data visualization -	
	sequence and structure of nucleic acids and proteins, data	
	visualisation tools.	
	3. Applications of bioinformatics - II: Pattern matching and	
	sequence alignment of nucleic acidsandproteins-	
	fundamentalprinciplesofpairwisesequencealignment, local	
	and global alignment, multiple sequence alignment,	
	sequence alignment tools and databases.	
	4. Applications of bioinformatics-III: Modeling and Simulation-	
	components and process of modeling and simulation,	
	algorithms-Monte Carlo, Metropolis, methods and tools used	
	for proteins structure (secondary, motifs and domains).	
	5. Applications of bioinformatics-IV:	
	Phylogenetic analysis: basic principles and methods	
	of preparation of phylogenetic trees. Drug discovery	
	and development: fundamental principles, rational	
	drug design, chemoinformatics and pharma	
	informatics resources, pharmacogenomics.	

Unit IV	Basic concepts of scientific writing: Language- good English and	15/1
	grammar, use and misuse of words, jargon, abbreviations,	
	literary ornaments, Main requirements of a scientific document.	
	2. Scientific Document: definition and types - research	
	papers, review papers, proceedings, projectreports,	
	these, book reviews.	
	3. Compilation of experimental record and programme of	
	writing, Structure of a scientific paper: the AIMRAD	
	system writing a paper according to the system,	
	preparing effective tables, graphs and photographs	
	4. Presenting and publishing research: Publishing in journals-	
	printed and electronic journals; selection of a journal	
	preparation and submission of the manuscript Presenting in	
	conferences: oral and poster presentations	
8.35	5. Legal aspects of scientific authorship: copyright considerations,	
98	Plagiarism-definition, types, causes and detection of plagiarism.	
	REFERENCE BOOKS:	
1	1. Biostatistics A foundation for Analysis in the Health	
	Sciences, by Wayn Daniel (7 th Ed) Wiley-India edition	
	2. Biostatistics by N. Gurumani MJP Publishers	
	3. Statistical Methods for the Analysis of Repeated	
	Measurements by C. S. Davis	
	4. Statistical Method in Biological Assays by D. J. Finney	
	5. Statistical Methods for Rates and Proportions by Fleiss,	
	Joseph L., Levin Bruce and Paik Myunghee Cho	
	6. Fundamentals of Biostatistics (2ndEd) Irfan Ali Khan and	
	Atiya Khanum, Ukaaz Publications, Hyderabad.	
	7. Design and analysis of experiments by D. C. Montgomery,	
	John Wiley & Sons.	

- 8. Sampling methods by M. N. Murthy, Indian Statistical Institute, Kolkata.
- Bioinformatics: A Beginner's Guide by Jean-Michel Claverie and C. Notredame (2003), Wiley Dream tech India(P) Ltd., New Delhi-110002
- Elementary Bioinformatics by I. A. Khan (2005), Pharma Book
 Syndicate, Hyderabad
- 11. Bioinformatics Computing by B. Bergeron (2003), Prentice-Hall of India Private Limited, New Delhi-110001
- 12. Bioinformatics (Instant Notes Series) by D. R. Westhead, J. H. Parishand R. M. Twyman (2003), Viva Books Private Limited, New Delhi, Mumbai, Chennai, Kolkata
- 13. Bioinformatics a Primer by P. Narayanan (2005), New Age International(P) Limited, Publishers, New Delhi-110002
- 14. Bioinformatics: A practical guide to the analysis of genes and proteins (2nd Ed) by A. D. Baxevanis and B. F. F. Ouellette (2001), John Wiley & Sons, New York.
- Bioinformatics. Managing Scientific Data by Z. Lacroix and T. Critchlow (2003), Morgan Kaufmann Publishers
- 16. Bioinformatics: sequence and genome analysis by D. W. Mount (2001), Cold Spring Harbor Laboratory Press, New York.
- 17. Bioinformatics: Managing Scientific Data by L. Zoe and C. Terence (2004), Morgan Kaufmann Publishers, New Delhi
- 18. How to write and publish a scientific paper by R. A. Day
- Writing Scientific Research Articles Strategy and Steps by Margaret Cargill and Patrick O' Connor. Wiley Blackwell
- From Research to Manuscript-A Guide to Scientific Writing by Michael Jay Katz, Springer.

19

DSC20MI	PRACTICAL COURSE - Microbiology Lab-III	
C39		
	Agricultural Microbiology and Phytopathology	4/2
	1. Quantitative estimation of IAA produced by PGPB	
	2. Isolation of siderophore producing organisms	
	3. Isolation of fungal cell wall degrading enzyme producing	
	organism from soil- Cellulase	
	4. Production of phosphate based biofertilizer	
	5. Production of nitrogen based biofertilizer	
	6. Isolation and identification of phytopathogenic fungi from	
	infected plant parts	
	7. Estimation of total phenols in diseased and healthy plant tissues	
	8. Quality control testing of market biofertilizer as per FCO	
	REFERENCE BOOKS: Agricultural Microbiology and	
	Phytopathology	
	1. Practical Microbiology by Dubey and Maheshwari, S. Chand	
	and company Ltd.	
	2. Laboratory experiments in microbiology by Gopal Reddy et	
11	al	
	3. Experiments in Microbiology, Plant pathology, Tissue	
	culture and Mushroom production technology by K R Aneja	
	4. Practical Handbook on Agricultural Microbiology by	ķ.
	Natarajan Amaresan, Prittesh Patel, Dhruti Amin	
	Enzymology and Enzyme Technology	4/2
	1. Quantitative estimation and determination of specific	
	activity of a-amylase	
	2. Salt (ammonium sulphate) precipitation of α-amylase	
	3. Study of the effect of substrate concentration [S ₀] on α -	
	amylase and determination of V _{max} and K _m	
	4. Study of the effect hydrogen ion concentration (pH) and	
	determination of optimum pH for activity of α-amylase	

5. Study of the effect of temperature and determination of	
optimum temperature for activity of α-amylase	
6. Study of the effect of metal ions on α-amylase activity	
7. Immobilisation of α-amylase by entrapment in	
alginate gel	
8. Determination of loading efficiency of	
immobilized α-amylase	
REFERENCE BOOKS: Enzymology and Enzyme Technology	
An Introduction to Practical Biochemistry by D. T. Plummer	
TMH Publishers	
2. Immobilised Enzymes - M. D. Trevan	
Advances in Enzymology – Series edited by N. O.	
 Kaplan, Academic Press Fermentation Technology	
	4/2
 Calibration of Colorimeter, Weighing balance, Thermometer 	
2. Validation of Refrigerator, Autoclave, Incubator,	
3. Preparation of SOP for Laboratory instruments - hot air oven,	:
incubator, pH Meter,	
4. Preparation of SOP for sterilisation of media (autoclave)	
/glassware (hot air oven),	
5. Preparation of HACCP flow chart	
6. Preparation of dilutions	
7. Disinfectant preparation and validation	
REFERENCE BOOKS: Fermentation Technology	
1. Indian Pharmacopia	
2. US Pharmacopia	
Quality Control Microbiology I	
1. Microbial Examination of Non-Sterile Products - Bacterial	
Endotoxin Testing by Gel Clot Method	
2. Test for Confirmation of Labelled LAL Reagent Sensitivity	
(LAL Test)	9

	3. Antibiotic Potency Testing	
	4. Microbial limit test of finished nonsterile pharmaceutical	
	product product	
	5. Enumeration of air microflora of working place	
	6. Detection of pathogens in the air of working place	
	7. Enumeration of surface microflora of working place (contact	
	method)	
	8. Finger disinfection microbiological testing	
	REFERENCE BOOKS: Quality Control Microbiology I	
	Indian Pharmacopia	
	2. US Pharmacopia	
	Biostatistics, Bioinformatics and Scientific Writing	
	1. Biostatistics	
	Measures of central tendency - Mean, median and mode	
	Measures of dispersion - variance and standard deviation	
	Estimation of confidence interval for a normal distribution	
a j	Plotting of Histograms and frequency polygons	
	Analysis of Variance (ANOVA) - CRD, RBD	
	Student's t-test and chi-square test on sample data	_
	2. Bioinformatics	
	Using PubMed/Medline for biological information	
	Retrieving protein and nucleic acid sequences from databases	
	Single and multiple Sequence alignment using BLAST, Clustal	
	and Clustal W Construction of Phylogenetic trees	
	Study of GenBank genomic entries	
	3. Scientific writing	- 1
	Preparing tables and charts using MS Excel	
	Preparing a PowerPoint presentation	
	REFERENCE BOOKS: Biostatistics, Bioinformatics and	
	Scientific Writing	
H TELLIS		

	Biostatistics A foundation for Analysis in the Health	
	Sciences, by Wayne Daniel (7th Ed) Wiley-India edition	
	2. Biostatistics by N. Gurumani. MJP Publishers	
	3. Bioinformatics: A practical guide to the analysis of genes	
	and proteins (2nd Ed) by A. D. Baxevanisand B. F. F.	
	Ouellette (2001), John Wiley & Sons, New York.	
	4. Bioinformatics. Managing Scientific Data by Z.	
	Lacroix and T. Critchlow (2003), MorganKaufmann	
	Publishers	
	5. Bioinformatics: A Beginner's Guide by Jean-Michel	
	Claverie and C. Notredame (2003), WileyDreamtech	
	India (P) Ltd., New Delhi – 110 002	
	6. Operate Computers yourself Part - 2 by D. S. Minhas	
	and G. Minhas, Dreamland Publications, j-128, Kirti	
	Nagar, New Delhi – 110 015	
	7. Writing Scientific Research Articles - Strategy and	
	Steps by Margaret Cargill and PatrickO'Connor.	
	Wiley Blackwell	
RPR20MI	Research Project	4/4
C31		
	SEMESTER - IV	
DSC20MI	FOOD AND DAIRY MICROBIOLOGY	
C41		
	On completion of the course, the students will be able to:	
	CO 1 Write about food spoilage and various methods of food	
	preservation	
	CO 2 Prepare various Indian and western fermented foods	
	CO2Danil III	1
	CO 3 Describe different food borne disease, their preservation,	1

	CO 4 Explain role of enzymes in food processing, various	
	applications of enzymes, and Laws regarding food safety	
Unit I	1. Micro-organisms and Food Materials	15/1
	2. General principles underlying microbial spoilage of food	
	3. New-Microbial spoilage of cereals and cereal products	
	4. Microbial spoilage of sugars and sugar products	
	5. Canning of food, Microbial spoilage of heated canned food	
	General principles of Preservation of food: Asepsis,	
	Removal of microorganisms, Maintenance of anaerobic conditions,	
	7. Methods of food preservation: Thermal processing, cold	
	preservation, Preservation by using chemical	
	preservatives, Food dehydration, Preservation by using	
	Irradiation	
Unit II	Milk: Definition, composition, Factors affecting	15/1
	composition, Nutritive value of milk	
	2. Spoilage of milk and milk products:	
	Milk as a substrate for microorganisms	
	Microbial contamination of milk - sources of contamination,	
	types of microorganisms present in milk Biochemical	
	activities during microbial spoilage of milk	
	3. Fermented foods: Microbiology and biochemistry of	
	Fermented cereal foods: Amboli, Jalebi	
-	Fermented cereal legume foods: Idli, Dhokla	
4.7	Fermented vegetable products: Sauerkraut, Pickles	
	Fermented milk products: Yoghurt, Cultured butter milk	
Init III	Food borne diseases: -Food born intoxications: Botulism and	15/1
	and Food borne infections: Bacillary dysentery	
	Transmission, and prevention and control of food borne	
	diseases	

	3. Fermented dairy products and their role in controlling food	
	borne diseases	
	4. Methods for the Microbiological Examination of Foods – Direct	
	examination, cultural techniques, enumeration methods (plate	
	count), rapid methods (immunological methods)	
Unit IV	1. Probiotics: probiotic microbial strains, ideal characteristics	15/1
	of probiotic strains, applications of probiotics,	
	immunogenic effects of probiotics, prebiotics	
	2. Enzymes in food processing: Need of enzymes, sources of	
	enzymes	
	3. Applications of enzymes in:	
	Production of high fructose syrup	
	Fruit juice industry, Baking industry, Oils and fat processing	
	4. Food safety and standards: Food safety issues, Food	
	adulteration, Contaminations with harmful microbes,	
	Metallic contamination, Food Laws and standards,	
	Industrial food safety Laws and standards, HACCP,	
	Indian Food Laws and standards	
	REFERENCE BOOKS:	
	Food processing Biotechnological application (2000)	
	by S. S. Marwaha & K. Arora, Asiatech Publishers	
	INC, New Delhi	
	2. Food science, Fifth Edition, Norman N. Potter 1996,	
	CBS publishers and distributors	
	3. The technology of food preservation, Fourth Edition,	
	Norman W. Desrosier BI Publisher and Distributors,	
	Delhi (1987)	
	4. Dairy Microbiology by Robinson	
	5. Dairy Microbiology by Robinson	
	6. Outlines of Dairy technology by Sukumar De	
	7. Milk and Milk Products - Clarence	

	8. Food Science (5th ed) Norman N. Potter, Joseph N. Hotchkiss	
DSC20MI	INDUSTRIAL WASTE MANAGEMENT	
C42		
	On completion of the course, the students will be able to:	
	CO 1 Explain types and characteristics of industrial wastes	
	CO 2 Write Microbiology and biochemistry of wastewater	
	treatment	
	CO 3 Describe methods of industrial waste treatment	
	CO 4 Explain biological methods of industrial waste	
Unit I	Types and Characterization of industrial wastes:	15/1
	Types of industrial wastes	
	General characteristics of different industrial wastes, pH,	
	suspended solids, volatile solids, COD,BOD and organic	
	carbon	
	2. Effects of industrial wastes on aquatic life- Effects of	
	industrial wastes of high BOD, effects of waste with toxicants	
	3. Self-purification in natural waters: Introduction, physical	
	process, chemical process, biological process	
Unit II	1. Microbiology and biochemistry of wastewater treatment:	15/1
	introduction	
	Cell physiology and important microorganisms - important	
	microorganisms, role of enzymes, principles of growth,	
	plasmid borne metabolic activities	
	Impact of pollutants on biotreatment	
	2. Methods of industrial waste treatment: Part-I: - Physico-	
	chemical Methods - neutralization, oxidation of cyanides,	
	Chromium reduction, reverse osmosis, carbon	
	adsorption, destruction of phenolic compounds	

Unit III	1 Methods of industrial results treatment D . II D . II	150
	Methods of industrial waste treatment: Part-II: - Biological methods - I	15/1
	7.5	
	Activated sludge process- Process, microbiology, sludge bulking	
	Trickling filters- Process, Microbiology and applications	
	2. Methods of industrial waste treatment: Part-III: - Biological	
	methods - II	
	Lagooning- Aerobic and anaerobic, applications	
	Anaerobic digestion-Process, microbiology of bio-gas formation,	
	applications	
Unit IV	1. Biomanagement of industrial waste: technological options for	15/1
	treatment of liquid and solid wastes bioaugmentation, packaged	
	microorganisms, use of genetically engineered microorganisms	
	inwastewater treatment	
	2. Industrial waste treatment: methods of treatment of wastes	
	from Dairies, Distilleries, paper and pulp industries,	
	fertilizer industries and pharmaceutical industries.	
	3. Zero waste discharge concept in industries.	
	4. Waste disposal control and regulations: Water pollution	
	control, Regulation and limits for disposalinto lakes, rivers,	
	oceans and land.	
	REFERENCE BOOKS:	
	1. Industrial Pollution Control Vol I by E. J. Middlebrooks	
	2. The treatment of industrial wastes. (2nd ed) by E. B. Besselievre	
	and M. Schwartz	
	3. Environmental Biotechnology (Industrial pollution	
	management) by S. N. Jogdand, Himalaya Publishing	
	House	
	4. Water and water pollution Handbook Vol I by Leonard L.	
	Ciaccio	
	5. Wastewater Treatment by M.N. Rao and A. K. Datta	
	House 4. Water and water pollution Handbook Vol I by Leonard L. Ciaccio	ď

	6. Industrial Pollution by N. L. Sax. Van Nostrand Reinhold	
	Company	
	7. Encyclopaedia of Environmental Science and Technology Vol	
	II by Ram Kumar	
	8. Water Pollution Microbiology by R. Mitchell	
	9. Handbook of Water Resources and Pollution Control by H.W.	
	Gehm and J. I. Bregman	
	10. Environmental Microbiology by P. D. Sharma, Narosa	
	Publishing House, New Delhi	
DSE20MI	RECOMBINANT DNA TECHNOLOGY	
C41		
	On completion of the course, the students will be able to:	
	CO 1 Explain basic tools of recombinant DNA technology	
	CO 2 Describe basic cloning strategies	
	CO 3 Describe cloning procedure in eukaryotes	
	CO 4 Explain various applications of DNA technology	
Unit I	Enzymes: restriction endonucleases, exonucleases – DNA	15/1
	and RNA; DNA polymerases, DNA ligases, alkaline	
	phosphatase, terminal transferase, reverse transcriptase,	
7/41	Polynucleotide kinase	
	2. Linkers and adaptors	
	3. Cloning vehicles (vectors): desirable features of ideal cloning	
	vehicles	
	Plasmids: - pUC, pBR322 and its derivatives	
	Viral based: - λ phage - basic and derivative vectors, phage	
	M13	
8	Specialist purpose vectors: - Expression, shuttle, Cosmids,	
	phagemids, gene inactivation, integrative	
	Artificial chromosomes: - BAC, YAC, PAC	
	4. Gene probes: development of DNA and RNA probes	
	Throngs and throngs	

	labeling of DNA and RNA probes-	
	Radioactive labelling of probe-Nick translation, random primed	
	radiolabelling, probes developed by PCR	
	Non- radioactive labelling of probe -HRP method, DIG labelling	
	system and Biotin-streptavidin labelling system	
Unit II	1. Basic Cloning Strategies General principles: DNA	15/1
	fragmentation, ligation to vectors, introduction into the host	
	cell, cell based and PCR based strategies	
	Cloning in Escherichia coli and other bacteria:	
	Construction of genomic libraries - Maniatis' strategy, EMBL	
	3A vector strategy	
	3. Construction of complementary DNA (cDNA) libraries -	
	Maniatis' hairpin-primed	
	3. second- strandDNA synthesis, oligo-dC tail method, the	
	Gubbler-Hoffman method, direction cDNA cloning,	
	plasmid- linked cDNA synthesis, CAPture method	
	4. Screening of libraries	
	Selection of recombinants- Mechanisms and methods-	-
	Direct selection of recombinants, Insertional inactivation	
	method, Blue white selection method, Red-white selection	
	method, Colony hybridization, plaque hybridisation	
Unit III	Cloning in yeast and fungi:	15/1
	Vector systems: YEp, YCp, YAC, modular expression vector,	
	yeast secretion vector (pGAP), Introduction of DNA, selectable	
	markers, Heterologous protein production - source of DNA,	
	level of heterologous RNA, amount of protein produced,	
	nature of product	
	2. Cloning in animals:	
	Vectors systems: plasmid-based vectors - pSV2-dhfr,	85
	pRSV-neo, virus based vectors - adenovirus, adeno-	

,	and R. Rapley, Panima PublishingCorporation, New Delhi	
	3. Recombinant DNA by J. D. Watson and others	
	4. Genetic Engineering by Chakravarty, CRC Publications	
	5. Genetic Engineering by Sandhya Mitra	
	6. Molecular Cloning (Volumes 1, 2, 3) by Sambrook and	
	Russell. Cold Spring Harbor LaboratoryPress International	
	Edition	
	7. Principles of Genetics by E. J. Gardner. John Wiley and Sons,	
	New York	
d	8. Maximizing Gene Expression by W. Reznikoff and L. Gold,	
	Butterworths Biotechnology Series	
	9. Yeast Genetic Engineering by P. J. Barr and others, Butterworths	
	Biotechnology Series	
DSE20MI	Quality Control Microbiology-II	
C42		
	On completion of the course, the students will be able to:	
	drug	
280	CO 2 Explain cleanrooms classification, contamination, testing,	
Unit I	1. Pharmaceutical Drug Regulatory Affairs- Introduction to	15/1
	Regulatory Affairs	
	2. Drug Regulatory bodies - United States Food and Drug	
	Administration (USFDA); International Conference on	
+:		
" "		
	Agency (MHRA).	
Unit I	CO 1 Describe regulatory affairs concerning pharmaceutical drug CO 2 Explain cleanrooms classification, contamination, testing, and microbiological environmental monitoring CO 3 Determine bioburden of finished products CO 4 Explain quality management systems in pharmaceutical 1. Pharmaceutical Drug Regulatory Affairs- Introduction to Regulatory Affairs 2. Drug Regulatory bodies - United States Food and Drug Administration (USFDA); International Conference on Harmonization of technical Requirement for registration of Pharmaceuticals for Human use (ICH); European Medicines Agency (EMA); Central Drugs Standard Control Organization (CDSCO); Medicines and Healthcare Products Regulatory	15/1

Unit II	1. Cleanrooms and environmental monitoring - Introduction;	15/1
	Cleanroom contamination	
	2. Cleanroom classification; Isolators; Cleanroom certification;	
	HEPPA and ULPA filters; Cleanroom testing	
	3. Microbiological environmental monitoring- Monitoring of air	
	born viable particles, surface	
	4. monitoring, water monitoring; Aseptic technique; Other	
	cleanroom disciplines;Cleanroom standards	
Unit III	1. Bioburden determination - Introduction; Total microbial	15/1
	count - Traditional counting Methods, Detection of	
	objectionable organisms, Nonsterile products and microbial	
	limits testing;In-process material bioburden assessment; Pre-	
	sterilization bioburden assessment; Alternative methods of	
	bioburden assessment	
	2. Microbiological analysis of raw materials and finished	
	products - Microbial count limits for finished products;	
	3. Endotoxin and pyrogen testing - Introduction; Pyrogenicity;	
	Bacterial endotoxin; Quantifying endotoxin; The limulus	
**	amoebocyte lysate test - method, applications, interference;	
	Alternative test methods	
Unit IV	1. Quality Management Systems in Pharmaceutical	15/1
	Manufacturing - Introduction; Pharmaceutical Quality System;	
	2. Good Manufacturing procedures - Specifications, Batch	
	Manufacturing records, Standard Operating Procedures;	
	Validation- Validation waster plan, Qualifications	
	and its types, GMP	
	3. Inspections; Hazard Analysis and Critical Control Point	
	(HACCP) - Definition, Principles and Guidelines for	
	application of HACCP principles.	
	4. Auditing the microbiology laboratory- Introduction; Record	
	keeping - Batch Manufacturing Record; Quality audits;	
	40 COLLEGE 32	

	Auditors and the audit process; Auditing the microbiology laboratory						
	REFERENCE BOOKS:						
	 Geoff Hanlon and Norman Hodges - Essential Microbiology for Pharmacy and pharmaceutical Science, John Wiley & Sons, Ltd. Tim Sandle - Pharmaceutical Microbiology - Essentials for Quality Assurance and QualityControl, Woodhead Publishing publications, Elsevier. 						
	 Laboratory biosafety manual. – 3rd ed. WHO Library Cataloguing-in-Publication Data ISBN 9241546506. 						
	4. Environmental Monitoring for cleanrooms and Controlled environments by Anne Marie 5. Dixon, Informa Healthcare Newyork, London, ISBN						
	13;978-0-8247-2359-0. 6. Cleanroom Microbiology for the non-Microbiologists,						
DSE20MI	Second Ed, by Devid M. Carlbarg, CRC Press, USA.						
C43	ENVIRONMENTAL MICROBIOLOGY						
	On completion of the course, the students will be able to:						
	CO 1 Understand developments in the field of environmental						
	microbiology with special emphasis on the role of microbes in mitigating environment pollution.						
	CO 2 acquaint with various cultural, biochemical and molecular						
	techniques used in understanding microbial diversity CO 3 Understand the role of microbes in management of waste						
	plant biomass						
	CU 4 Understand the role of minutes in 1						
	CO 4 Understand the role of microbes in bioremediation of environmental pollutants like petroleum hydrocarbons,						

	utility of microbes in mineral and oil recovery.	
Unit I	1. Introduction of environment microbiology, development of	15/1
	microbial ecology	
l l	2. Understanding microbial diversity in the environment by	
	culture-dependent and culture-independent approaches	1
	3. Analysis by FAME, measuring metabolic capabilities using	
	BIOLOG, G+C analysis, slot-blot hybridization of community	
	DNA, and fluorescent in situ hybridization of intact cells,	
	metagenomic analysis of solid and aquatic sediments	
Unit II	1. Microbial diversity in extreme environments- Occurrence,	15/1
	diversity, adaptations and potential applications of oligotrophs,	
	thermophiles, psychrophiles, organic solvent and radiation	
	tolerants, metallophiles, acidophiles, alkaliphiles and	
	halophiles	
	2. Biotechnological applications of the same	
Unit III	Biomass waste management of plant's residues	15/1
	2. Lignocellulolytic microorganisms, enzymes and their	
	biotechnological applications in: (i) biopulping, (ii)	
	biobleaching, (iii) textiles (iv) biofuels, (v) animal feed	
	production	
Jnit IV	Bioremediation of environmental pollutants	15/1
,	Petroleum hydrocarbons and pesticide	
	3. use of biosensors for their detection	
4	4. Microbial enhanced oil recovery	
	5. bioleaching of copper, gold and uranium, electronic waste	
	management	
	REFERENCE BOOKS:	
	1. Microbial Ecology by R.M. Atlas, R. Bartha. 3rd edition.	
	Benjamin Cummings Publishing Co, USA. 1993.	
	2. Environmental Microbiology by A.H. Varnam, M.G. Evans.	. 1
	Manson Publishing Ltd. 2000.	
		1

	Auditors and the audit process Auditing the migrahiology	
	Auditors and the audit process; Auditing the microbiology laboratory	
	REFERENCE BOOKS:	
	1. Geoff Hanlon and Norman Hodges - Essential	
	Microbiology for Pharmacy and pharmaceutical Science, John	
	Wiley & Sons, Ltd.	
	2. Tim Sandle - Pharmaceutical Microbiology - Essentials for	
	Quality Assurance and QualityControl, Woodhead	
	Publishing publications, Elsevier.	
	3. Laboratory biosafety manual 3rd ed. WHO Library	
	Cataloguing-in-Publication Data ISBN 9241546506.	
	4. Environmental Monitoring for cleanrooms and	
1.	Controlled environments by Anne Marie	
-	5. Dixon, Informa Healthcare Newyork, London, ISBN	
	13;978-0-8247-2359-0.	1
	6. Cleanroom Microbiology for the non-Microbiologists,	
Si Si	Second Ed, by Devid M. Carlbarg, CRC Press, USA.	
DSE20MI	ENVIRONMENTAL MICROBIOLOGY	
C43		
	On completion of the course, the students will be able to:	
	CO 1 Understand developments in the field of environmental	
	microbiology with special emphasis on the role of microbes in	
	mitigating environment pollution.	
	CO 2 acquaint with various cultural, biochemical and molecular	
	techniques used in understanding microbial diversity	
	CO 3 Understand the role of microbes in management of waste	
	plant biomass	
	CO 4 Understand the role of microbes in bioremediation of	
	environmental pollutants like petroleum hydrocarbons,	
<u> </u>	pesticides, plastic and electronic waste; also understands	
		1

	2. Laboratory Methods in Food Microbiology by D. W. Harrigan,					
	Academic Press					
	3. Handbook of Techniques in Microbiology by A. S. Karwa,					
	M. K. Rai and H. B. Singh Scientific Rthrs Jodhpur					
	Industrial Waste Management	4/2				
	Determination of total solids (TS), total suspended solids	-				
	(TSS), total dissolved solids (TDS), total volatile solids					
6	(TVS)					
	2. Determination of Alkalinity of industrial effluent					
	3. Determination of COD of industrial effluent					
	4. Determination of BOD of industrial effluent					
ĸ	5. Detection and isolation pectinase producing bacteria					
	6. Determination of oil & grease content from the waste					
	water sample					
	7. Development of an activated sludge culture					
	8. Development of an anaerobic digestion culture and					
	production of bio-gas					
	REFERENCE BOOKS: Industrial Waste Management					
	1. Standard Methods in Water and Wastewater Analysis by APHA,					
	AWWA and WPCF					
	2. Analysis of Plants, Irrigation water and Soils by R. B.					
	Somawanshi and others. Mahatma PhuleAgricultural					
	University, Rahuri					
	Microbiological aspects of Anaerobic Digestion – Laboratory					
	Manual by D. R. Ranade and R. V.Gadre, MACS Agharkar					
	Research Institute, Pune					
	4. Pollution Microbiology: A Laboratory Manual by Melvin S.					
	Finstein, Marcel Dekker Inc.					
RPR20MI	Project work	6/6				
C41						

Nature of Question Paper

Instructions: 1) Question 1 is compulsory.

- 2) Figures to the right indicate full marks.3) Draw neat labeled diagrams wherever necessary.4) Use of calculator is allowed.

					Total Marks: 80
Q.1. Select	correct a	alternative.	<u>T</u> 1	heory papers	(16)
i)					
-1)	a)	b)	c)	d)	
ii)	,	,	,		
	a)	b)	c)	d)	
iii)					
	a)	b)	c)	d)	
iv)	a)	b)	c)	d)	
v)	a)	0)		u)	
	a)	b)	c)	d)	
vi)					
	a)	b)	c)	d)	
vii)		1)			
viii)	a)	b)	c)	d)	
VIII)	a)	b)	c)	d)	
ix)					
	a)	b)	c)	d)	
x)					
	a)	b)	c)	d)	
xi)	a)	b)	c)	d)	
xii)	a)	U)	-)	ω)	
,	a)	b)	c)	d)	(501) 50
				38	ESTD ESTD
					ID FOID S

xiii) a) b) c) d) xiv) a) b) c) d) xv) a) b) c) d) xvi) a) b) c) d)

Section I

- Q.2. Attempt any One.

 i)

 ii)
- Q.3. Attempt any Two
 i) (16)
 - ii) iii)
- Q.4 Attempt any Four

 (16)
 - ii)
 iii)
 iii)
 iv)
 v)
- Q.5. Attempt any Two.

 i)
 ii)
- Q.6. Attempt any Two
 i)
 ii)

39

iii)

- i) ii)
- iii)
- iv) v)
- vi)

Instruction to paper setters: Equal weight age should be given to all units.

SCHEME OF MARKING (THEROY)

Semester	Marks	Evaluation	Paper	Standard of passing
III	80	Semester wise	Each paper of 80 marks	40 % (32 marks)
IV	80	Semester wise	Each paper of 80 marks	40 % (32 marks)

SCHEME OF MARKING (CIE) Continuous Internal Evaluation

Semester	Marks	Evaluation	Paper	Standard of passing
III	20	Semester wise	one	40 % (8 marks)
IV	20	Semester wise	one	40 % (8 marks)

SCHEME OF MARKING (PRACTICAL)

Semester	Course	Marks	Evaluation	Standard of passing
III	Practical III And research project	250	Semester	40 %
IV	Practical IV And research project	250	Semester	40 %

*A separate passing is mandatory

