"Dissemination of Education for Knowledge, Science and Culture"
-Shikshanmaharshi Dr. Bapuji Salunkhe.

Shri Swami Vivekanand Shikshan Sanstha's

VIVEKANAND COLLEGE (EMPOWERED AUTONOMOUS), KOLHAPUR

DEPARTMENT OF MICROBIOLOGY

B.Sc. Part-III Semester - V & VI

SYLLABUS

SYLLABUS TO BE IMPLEMENTED FROM AUGUST 2023

STRUCTURE OF COURSE

Sr. No	Course code	Title of the course	Theory	Internal	Total Mar ks
		Semester V		•	
1	DSE-1010E1	Immunology	35	15	50
2	DSE-1010E2	Medical Microbiology	35	15	50
3	DSE-1010E3	Industrial Microbiology	35	15	50
4	DSE-1010E4	Microbial Biochemistry	35	15	50
3	Practical I	Immunology and Medical Microbiology	-	-	50
	Practical II	Food and Industrial Microbiology			50
4	SEC-SE	Management of Human Microbial Diseases	-	-	50
5	AECC-E	English			50
		Semester VI	•	•	
5	DSE-1010F1	Virology	35	15	50
	DSE-1010F2	Microbial Genetics	35	15	50
6	DSE-1010F3	Agricultural Microbiology	35	15	50
	DSE-1010F4	Environmental Microbiology	35	15	50
7	Practical III	Virology and Microbial Genetics			50
	Practical -IV	Agriculture and Environmental Microbiology			50
8	SEC-SF	Food Fermentation Techniques			50
9	AECC-F	English			50

•	Theory and Practical Lectures:
	48 Min. Each

Total Credits for B.Sc.-III (Semester V & VI): 44

• Total Marks for B.Sc.-III (Excluding AECC (E & F): 700

[•] Total Marks for B.Sc.-III (Including AECC (E & F): English and SEC-S): 800

- DSE- Discipline Specific Elective. AECC- Ability Enhancement Compulsory Course (E & F): English
- SEC-S Skill Enhancement Course for Science,
- SEC-S Examination will be conducted annually (E &F Combine) for 100 marks, passing for SEC shall be 40%Practical Examination will be conducted annually for 200 Marks per course (subject).
- There shall Separate passing is mandatory for Theory, Internal and Practical

SEMESTER-V

Paper IX	IMMUNOLOGY	No. of
DSE:1010E1	Theory: 30 Hours (Credits -2)	Hours
		per
		unit/
		credit

Course Outcomes - Upon successful completion of course, students are expected to be able to -

CO1: Understand the overall organization of the Immune system.

CO2: Explain the salient features of antigen antibody reaction & its use in diagnostics and in various other studies.

CO3: Understand various viral, bacterial & fungal diseases, their causative agent, mode of infection, epidemiology lab diagnosis, treatment and prophylaxis.

CO4: Explain different antimicrobial agents with respect to their mode of action uses.

	1.Cells of Immune system –	
UNIT I	a. Hematapoiesis-characteristics & types of stem cells.	15
	b. Classification of cells of immune system - lymphoid & myeloid	
	cells.	
	c. Structure & function of lymphoid cells – T cell & T cell subsets,	
	NK cells, B cells & dendritic cells.	
	d. Structure & function of myeloid cells- Granulocytes, monocytes	
	& macrophages.	
	2. Membrane receptors for antigen and their role in antigen recognition	
	a. B cell surface receptor for antigen (BCR)	
	b. T cell surface receptor for antigen (TCR)	
	c. NK receptors	
	3. Molecular mechanism of antibody production.	

	a. Processing and presentation of antigen by Antigen presenting cell.	
	b. Interaction of APC with T _H Cell.	
	c. Interaction of B cell and T_H Cell	
	d. Clonal proliferation and differentiation of activated B cell.	
	e. Role of follicular dendritic cells in selection of high affinity B cell.	
	f. Role of cytokines in proliferation and differentiation.	
	4. Cytokines -	
	a. Properties, types and function of cytokines produced by TH cell	
	and Macrophages	
	5. Interferon -	
	a. Nature and types of Interferons	
	b. Induction of Interferon	
	c. Mechanism of action.	
	6. Immunological tolerance:	
	a. Tolerance induction in adults and neonates by drug	
	and monoclonal antibody	
	b. Cellular mechanism of immunological tolerance.	
	c. Termination of tolerance.	
	1. Complement –	
UNIT II	a. Nature and Properties of Complement	
	b. Complement activation by classical and	15
	alternate pathway.	
	c. Biological consequences of complement	
	activation.	
	2.Monoclonal antibodies -	
	a. Basic concepts - Mouse, Human and Humanized antibodies.	
	b. Production of monoclonal antibodies by hybridoma technology.	
	c. Production of Humanized Monoclonal antibodies by	
	recombinant DNA technology.	
	d. Applications of monoclonal antibodies in diagnosis, treatment	
	and research.	
	3.New diagnostic techniques: -	
	a. RIA b. Dot Blot Technique	
	b. Doi blot rectalique	

- 4. Hypersensitivity
 - a. Basic concept, Gell and Coombs classification
 - b. Type I Anaphylaxis
 - c. Type II Blood transfusion reactions
 - d. Type III Serum sickness
 - e . Type IV- Delayed type hypersensitivity Allograft rejection.
- 5. Autoimmune disease:
 - a Types of autoimmune diseases.
 - i) Organ specific -ex. Hashimotos thyroiditis , Good Pasture syndrome, Graves disease, Insuline dependent diabetes , Myosthenia gravis , Addison's disease
 - ii) Systemic autoimmune diseases- ex. Systemic Lupus erythematosus & MS
 - b Treatmentofautoimmunediseases.

- 1) Immunology 6th edition Kubay, Kindt, Goldsby & Osborne.
- 2) Essential Immunology 11th edition Delves, Martin, Burton and Roitt.
- 3) Immunology An Introduction, 4th edition Tizzard.
- 4) Basic and Clinical Immunology 5th edition-Stites, Stobo, H. H. Fudenberg.
- 5) Essentials of Immunology S. K. Gupta
- 6) Immunology M. P. Arora

		No. of
Paper X	MEDICAL MICROBIOLOGY	Hours
DSE:1010E2	Theory: 30 Hours (Credits -2)	per
		unit/
		credit
Course Outco	omes - Upon successful completion of course, students are expected to be ab	le to –
CO1: Correla	te disease symptoms with causative agent, isolate and identify pathogens.	
CO2: Understand mechanism of action of antimicrobial drugs and their uses as prophylae		
agents.		
CO3: Explain	pathogenicity of organisms associated with human infections.	
CO4: Explain	different antimicrobial agents with respect to their mode of action uses.	
	1. Morphology, cultural and biochemical characteristics, antigenic structure,	15
UNIT I	modes of transmission and pathogenesis, symptoms, laboratory diagnosis,	
	prevention and control of diseases caused by -	
	a. Mycobacterium leprae	
	b. Clostridium perfringens,	
	c. Treponema pallidum	
	2. Morphology, cultural and biochemical characteristics, antigenic	
	structure, modes of transmission and pathogenesis, symptoms, laboratory	
	diagnosis, prevention and control of diseases caused by -	
	a.Pseudomonas aeruginosa	
	b. Vibrio cholera	
	c. leptospira interrogans	
	d.Helicobacter pylori	
	Morphology, cultural and biochemical characteristics, antigenic structure,	
UNIT II	modes of transmission and pathogenesis, symptoms, laboratory diagnosis,	15
	prevention and control of diseases caused by -	
	a. Protozoa: <i>Plasmodium falciparum</i> (malaria)	
	b. Viruses: i) Hepatitis A & B virus	
	ii) Rabies virus	
	iii) Dengue virus	
	c Fungi: Candida albicans	

- 2. Chemotherapy
 - a. General principles of chemotherapy
 - b. Mode of action of Penicillin, Streptomycin, Bacitracin, , sulphonamide and Quinolones on microorganisms.
 - c. Antiviral drug: AZT
 - d. Antifungal drugs: Ketoconazole
 - e. Antiprotozoal drugs: Metronidazole
 - f. Mechanism of drug resistance
 - g. Chemoprophylaxis
- 3. Gene therapy Concept, advantages & disadvantages.
- 4. Immunoprophylaxis Vaccines and Immune Sera
 - a. Vaccines live attenuated, heat killed, subunit, conjugate and DNA vaccines
 - b. Immune Sera examples with applications

- 1) Microbiology Davis
- 2) Immunology & serology Ashim Chakravarty
- 3) Medical Microbiology 16th edition by David Greenwood, Richard C B Slack, John Peutherer
- 4) Medical Bacteriology Dey & Dey
- 5) Medical Bacteriology including Medical Mycology & AIDS NC Dey & T. K. Dey
- 6) Principals and Practice of Clinical Bacteriology A.M. Emmerson

Paper XI	INDUSTRIAL MICROBIOLOGY	No. of
DSE:	Theory: 30 Hours (Credits -2)	Hours
1010 E 3		per unit/
		credit
Course Outc	omes - On completion of course, student will be able to -	
CO1: Know	methods used for industrial production of various products using microon	ganisms.
CO2: Explain	n various techniques for product recovery after fermentation.	
CO3: Unders	stand the cause of spoilage of food	
CO4: Unders	stand the methods for preservation of food.	
	1.Food Microbiology	15
UNIT I	a. Food as a substrate for microorganisms.	
	b. Food born diseases - i. Role of microorganisms in food born	
	diseases	
	ii. Food poisoning - i) Staphylococcal	
	ii) Fungal (aflatoxin)	
	iii. Food infections -Salmonellosis.	
	iv. Food spoilage and its preservation	
	2. Industrial Microbiology	
	a. Strain Improvement	
	b. Scale up of fermentations	
	c. Microbiological assays	
	d. Preservation of industrially important microorganisms - Methods,	
	Culture collection centers	
	1. Industrial production of -	
UNIT - II	a. Amylase - Organisms used, Inoculum preparation,	15
	Fermentation media, Fermentation conditions, Extraction	
	and Recovery.	
	b. Grape wine - Definition, types, production of table wine (Red and	
	White), microbial defects of wine	
	c. Penicillin - Organisms used, Inoculum preparation,	
	Fermentation media, Fermentation conditions, Extraction	

- and Recovery. Concept of semi synthetic penicillin
- d. Citric acid Organisms used, Inoculum preparation,
 Fermentation media, Fermentation conditions, Extraction and Recovery.
- e. SCP by using yeast
- 2. Microbial Production of
 - a. Vitamins Vit. B₁₂
 - b. Amino acids Lysine
- 3. Probiotics- Concept, Production by using Lactobacillus and applications
- 4. Downstream processing & product recovery
 - a. Centrifugation
 - b. Flocculation
 - c. Filtration
 - d. Solvent extraction
 - e. Distillation
 - f. Precipitation
 - g. Crystallization
 - h. Chromatography.
- 5. Testing of sterility, pyrogen, carcinogenicity, toxicity and allergens

A. For Food microbiology and industrial microbiology

- Principles of fermentation technology- Peter F. Stanbury & Allan Whitaker (Pergamon Press).
- 2. Principles of Microbial technology Peppler, Vol. I & II.
- 3. Industrial Microbiology Casida
- 4. Industrial Microbiology A. H. Patel
- 5. Industrial Microbiology Prescott & Dunn
- 6. Industrial Microbiology Miller
- 7. Pharmaceutical Microbiology Huggo & Russel
- 8. Food Microbiology Frazier

Paper XII	MICROBIAL BIOCHEMISTRY	No. of
DSE:	Theory: 30 Hours (Credits -2)	Hours
1010 E 4		per unit/
		credit

Course Outcomes - Upon successful completion of course, students are expected to be able to -

CO1: Explain Metabolic pathways and Bioenergetics

CO2: Understand Various downstream processing

CO3: Understand Basic concept related to enzyme

	1. Enzymes -	15
UNIT I	a. Definition, properties, structure, specificity, classification and	
	mechanism of action (Lock & Key, Induced fithypothesis)	
	b. Allosteric enzymes - Definition, properties, models explaining	
	mechanism of action.	
	c. Ribozymes – concept, significance.	
	dIsozymes- definition, properties, example.	
	e. Factors affecting catalytic efficiency of enzymes	
	i. Proximity and orientation	
	ii. Strain and distortion.	
	iii. Acid base catalysis	
	iv. Covalent catalysis	
	f. Enzyme kinetics - Derivation of Michaelis-Menten equation,	
	Lineweaver Burk Plot, Significance of Km and Vmax.	
	g. Regulation of enzyme synthesis.	
	i.Positive control - Ara operon	
	ii.Negative control -Lac operon	
	iii.Catabolite repression	
	2. Extraction & purification of enzymes.	
	a. Methods of extraction of intracellular and extracellular enzymes.	
	i. Choice of source and biomass development	
	ii.Methods of homogenization - cell disruption methods	

	iii .Purification of enzymes on the basis of -	
	Molecular size	
	Solubility differences	
	Electrical charge	
	Adsorption characteristic differences	
	3. Assay of enzymes - Based on substrate and product estimation.	
	4. Immobilization of enzymes - Methods & applications	
	5. Confirmation of purified enzymes	
	1. Basic concepts of-	15
UNIT II	a.Glyoxylate bypass	
	b.Phosphoketolase pathway	
	c.Bioluminescence - Occurrence, mechanism & applications.	
	2. Assimilation of -	
	a.Carbon	
	b.Nitrogen with respect to N ₂ and NH ₃ (GOGAT)	
	c.Sulphur	
	3. Prokaryotic Biosynthesis of -	
	a.RNA	
	b.DNA	
	c.Proteins	
	d. Peptidoglycan	

- 1. Enzymology Prise & Stevens
- 2. Enzymes Biochemistry, Biotechnology, clinical chemistry Trevor Palmer.
- 3. Enzymes Dixon and Webb
- 4. Lehnigers Principles of Biochemistry by David Nelson & Michale Cox, Fifth edition.
- 5. General Microbiology Stanier
- 6. Principles & techniques of Biochemistry Wilson & Walker, 6th edition.
- 7. Biochemistry Lubert Stryer

SEC-SE	Management of Human Microbial Diseases	No. of
	Theory :30 Hours (Credits -2)	Hours
		per unit/
		credit
Course Out	comes - Upon successful completion of course, students are expected to be	able to –
CO1: Explai	n the causes of immune deficiency diseases.	
CO2: Under	stand the cause and transmission of diseases.	
602 D :		
CO3: Desig	n the diagnostic test and therapeutic agents.	
CO4: Apply	their knowledge to prevent diseases	
UNIT I	a. Human Diseases	15
	Infectious and non infectious diseases, microbial and non	
	microbial diseases, Deficiency diseases, occupational diseases,	
	Incubation period, mortality rate, nosocomial infections	
	b. Microbial diseases	
	Respiratory microbial diseases, gastrointestinal microbial diseases,	
	Nervous system diseases, skin diseases, eye diseases, urinary tract	
	diseases, Sexually transmitted diseases: Types, route of infection,	
	clinical systems and general prevention methods, study of recent	
	outbreaks of human diseases (SARS/ Swine flu/Ebola) - causes,	
	spread and control, Mosquito borne disease - Types and	
	prevention.	
UNIT II	a. Therapeutics of Microbial diseases	15
	Judicious use of antibiotics, importance of completing antibiotic	
	regimen, Concept of DOTS, emergence of antibiotic resistance,	
	current issues of MDR/XDR microbial strains.	
	Treatment using antiviral agents: Amantadine, Acyclovir,	
	Azidothymidine. Concept of HAART.	
	b . Prevention of Microbial Diseases	
	General preventive measures, Importance of personal hygiene,	
	environmental sanitation and methods to prevent the spread of	
	infectious agents transmitted by direct contact, food, water and insect	

vectors.	
Suggested Readings -	
Ananthanarayan R. and Paniker C.K.J. (2009) Textbook of	
Microbiology. 8th edition, University Press Publication	
1. Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott,	
Harley and Klein's Microbiology. 9th edition. McGraw Hill	
Higher Edu.	

SEMESTER VI

PAPER VII	VIROLOGY	No. of
DSE:1010F1	Theory: 30 Hours (Credits -2)	Hours
		per
		unit/
		credits
Course Outco	omes - Upon successful completion of course, students will be able to -	
CO1: Describ	e various stages involved in multiplication cycle of viruses	
CO2: Unders	tand methodological approaches in isolation, cultivation & purification of v	viruses.
CO3: Disting	uish characteristics of normal cell and cancerous cell.	
CO4: Explain	various methods for enumeration of viruses.	
UNIT - I	1. a. The Structural properties of viruses: Capsids, Nucleic acids and	
	envelope.	15
	b.Structure of T4 bacteriophage, TMV and HIV, Viroids & prions.	
	c. One step growth experiment.	
	2. Isolation, cultivation and Purification of viruses	
	a. Isolation and cultivation of viruses-	
	i.Animal virus - Tissue culture, chick embryo and live animals.	
	ii.Plant virus – Protoplasts culture technique, Insect tissue culture	
	iii. Bacteriophages - Plaque method.	
	b. Purification of viruses using physico-chemical properties	
	i.Density gradient centrifugation	
	ii. Precipitation	

	3. Methods of Enumeration of viruses	
	i. Latex droplet method (Direct microscopic count)	
	ii. Plaque and pock method.	
UNIT - II	1. a) Lysogeny - Definition of lysogeny and temperate phage, types, lysogeny	
	by lambda phage - adsorption & penetration, genetic map for	
	lysogenic interaction, expression of λ genes, establishment of	
	repression, maintenance of repression, integration of λ genome	
	in host chromosome.	
	b. Reproduction of animal viruses - Adenovirus.	
	c. Reproduction of plant viruses – TMV	
	d. Reproduction of T4 phage.	
	2. Oncogenesis:	
	a. Definition of oncogenesis	
	b. Types of cancer	
	c. Characteristics of cancer cells.	
	d. Tumor suppressor genes and protooncogenes	
	e. Hypothesis aboutcancer.	
	I. Somatic mutation hypothesis	
	II. Viral gene hypothesis	
	i. Role of DNA viruses with special emphasis on	
	Papova viruses.	
	ii. Role of RNA tumor viruses	
	iii. Provirus theory, Protovirus theory, Oncogene	
	theory.	
	III . Defective immunity hypothesis	

- 1.General Microbiology Stanier
- 2. Microbiology Prescott, Klein
- 3. Microbiology Davis
- 4.General Virology Luria
- 5. Genetics of Bacteria and their Viruses William Hayes.
- 6.General Microbiology Vol. II Powar and Daginawala
- 7. Virology Biswas and Biswas

PAPER VII	MICROBIAL GENETICS	No. of
DSE:1010F1	Theory: 30 Hours (Credits -2)	Hours
		per
		unit/
		credits
Course Outc	omes - Upon successful completion of course, students will be able to -	
CO1: Unders	tand molecular mechanism involved in gene regulation	
CO2: Unders	tand the basic concept of operon and mutation.	
CO3: Discus	s the principle, working and applications of molecular biology techniques in	cluding
PCR and DN	A sequencing.	
CO4: Explain	techniques used to manipulate genes & formation of clones	
UNIT-I	1. One cistron - one polypeptide hypothesis.	
UNIT-I	 One cistron - one polypeptide hypothesis. Molecular mechanism of gene expression 	15
UNIT-I		15
UNIT-I	2. Molecular mechanism of gene expression	15
UNIT-I	Molecular mechanism of gene expression a. Concept of operon	15
UNIT-I	Molecular mechanism of gene expression a. Concept of operon b. Pribnow box	15
UNIT-I	2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon	15
UNIT-I	2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon 3. Mutations	15
UNIT-I	2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon 3. Mutations a. Expression of mutations -	15
UNIT-I	 2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon 3. Mutations a. Expression of mutations - i. Time course of phenotypic expression. 	15
UNIT-I	 2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon 3. Mutations a. Expression of mutations - i. Time course of phenotypic expression. ii. Conditional expression of mutation. 	15
UNIT-I	 2. Molecular mechanism of gene expression a. Concept of operon b. Pribnow box c. Genetic regulation in tryptophan operon 3. Mutations a. Expression of mutations - i. Time course of phenotypic expression. ii. Conditional expression of mutation. b. Suppressor mutations (with examples) - Genetic and non- 	15

b. Relative growth

c. Visual detection

b. Transposable elements - general properties and types.

1.Genetic complementation - Cis-trans test

2.Extrachromosomal inheritance:

3. Techniques in Molecular Biology -

a. DNA sequencing (Sanger's method)

a. Kappa particles.

UNIT - II

15

- b. DNA Finger printing
- c. PCR
- d. Blotting techniques-Southern, Western, Northern

4. Genetic engineering

- a. Introduction
- b. Tools of genetic engineering
 - i. Enzymes
 - ii. Vectors-phage, plasmid and cosmid
 - iii. DNA probe methods of preparation and detection.
 - iv. Linkers and adaptors
 - v. Cloning organisms (Bacteria and Yeasts)
 - vi. Genomic library and cDNA library
- c. Techniques
 - i. Isolation of desired DNA segment-Shotgun Method,
 - cDNA synthesis, Chemical synthesis
 - ii. Construction of r-DNA using appropriate vector- Use of restriction enzymes,

Linkers, Adaptors Homopolymer tails

- iii. Transfer to cloning organisms (Bacteria and Yeasts)
- iv. Selection of recombinant bacteria and yeasts Blue and white screening, Colony hybridization technique.
- d. Application of genetic engineering in
 - i. Medicine-
 - ii.Agriculture
 - iii.Industry
 - iv. Environment
 - v. Understanding biology

Books Recommended:

- 1.Genetics Stickberger.
- 2. Genes Benjamin Lewin IX ed.
- 3. Principles of gene manipulation Primrose and Old
- 4.Genetic Engineering Second Ed. Desmond S. T. Nicholl
- 5.Recombinant DNA J. D. Watson
- 6.Biochemistry Lehninger
- 7. Molecular Biology of Gene J. D. Watson

PAPER VIII		No. of
DSE:1010F2	AGRICULTURAL MICROBIOLOGY	Hours
	Theory: 30 Hours (Credits -2)	per
		unit/
		credit

Course Outcomes - Upon successful completion of course , students will be able to -

CO1: Understand various plant microbe interactions especially rhizosphere and their applications especially the biofertilizers and their production techniques

CO2: Understand various biogeochemical cycles - C,N,P cycle and microbes involved

CO3: Perform isolation of agriculturally important microorganisms and formulate biofertilizers.

CO4: Explain role of microorganisms and common symptoms of plant diseases.

	1. Soil Microbiology.	
UNIT -I	a. Physical characters.	15
	b. Chemical characters.	
	c. Types of microorganisms in soil and their role in soil	
	fertility.	
	d. Microbiological interactions - Symbiosis, Commensalism,	
	Amensalism, Parasitism, Predation.	
	2. Role of microorganisms in elemental cycle	
	e. Carbon cycle.	
	f. Nitrogen cycle	
	g. Phosphorous cycle	

	h. Sulfur cycle	
	3. Manure and Compost	
	a. Methods of Production -	
	i. Green manure and farm yard manure	
	ii. City compost- Windrow and pitmethod.	
	iii Vermicompost	
	b. Optimal conditions for composting with reference to -	
	Composition of organic waste, Availability of	
	microorganisms, Aeration, C:N:P ratio, Moisture	
	content, Temperature, pH, Time.	
	1. Types, production, methods of application and uses of -	
UNIT - II	a. Biofertilizers	15
	i. Nitrogen fixing - Azotobacter, Rhizobium,	
	Azospirillum.	
	ii. Phosphate Solubilizing Microorganisms.	
	b. Biopesticides	
	i.Bacillus thuringiensis	
	ii. Tricoderma spp.	
	2. Biodegradation by bacteria & fungi-	
	a. Cellulose	
	b. Pesticides	
	3. Plant Pathology	
	a. Common symptoms produced by plant pathogens	
	b. Modes of transmission of plant diseases.	
	c. Plant diseases-	
	i. Citrus Canker	
	ii. Tikka disease of groundnut	
	iii. Bacterial Blight of Pomegranate.	
	iv. Control of plant disease caused by bacteria.	

- 1. Soil Microbiology An exploratory approach Mark Coyne.
- 2. Agricultural Microbiology N. Mukherjee and J. Ghosh.
- 3. Introduction to Soil Microbiology Martin Alexander II^{nd} Edition.
- 4. Agricultural Microbiology Rangaswamy and Bhagyaraj IInd Edition

- 5. Plant diseases R. S. Singh.
- 6. Diseases of crop plants in India G. Rangaswamy.
- 7. Soils and Soils Fertility- 6^{th} edition-Frederick R.Troeh (

Blackwell publishing Co.)

8. Soil Microbiology-Singh, Purohit, Parihar. (Agrobios India, 2010)

9. Soil Microbiology and Biochemistry - Ghulam Hassan Dar (New India Publishing Agency, 2010)

		No. of
PAPER VIII	ENVIRONMENTAL MICROBIOLOGY	Hours
DSE:1010F2	Theory: 30 Hours (Credits -2)	per
		unit/
		credit

Course outcomes - Upon successful completion of course, students will be able to -

CO1: Understand the basic principle of environment microbiology and be able to apply these principles to understanding and solving environmental problems.

CO2: Know the Microorganisms responsible for water pollution and their transmission CO3: Describe classification of lakes, sources, consequences and control of

eutrophication.

CO4: Explain various bioburden tet and clean room concepts.

OIVII - I	UNIT	_	Ι
-----------	-------------	---	---

- 1.General characteristics of waste
 - a.Liquid waste pH, electrical conductivity, COD, BOD, total solids, total dissolved solids, total suspended solids, total volatile solids, chlorides, sulphates, oil & grease.
 - b. Solid waste- pH, electrical conductivity, total volatile solids, ash.
 - c. Standards as per MPCB
 - 2. Sewage Microbiology
 - a. Physico-chemical and Biological characteristics
 - b. Treatment methods
 - i. Physical treatment: Screening, Sedimentation

	ii. Biological treatment: Trickling filter, Activated	
	sludge process, Oxidation ponds, Anaerobic	
	digestion (Biomethanation), Septic tank.	
	iii. Chemical treatment - Chlorination	
	3.Characteristics of waste generated by	
	a. Sugar Industry	
	b. Dairy Industry	
	4. Characteristics and treatment of waste generated by	
	Hospitals	
	5.Eutrophication	
	a. Classification of lakes	
	b. Sources	
	c. Consequences	
	d. Control	
IINIT II	1. Biological safety in laboratory	4=
<u>UNIT - II</u>	a. Good Laboratory Practices	15
	b. Bio safety levels (BSL)	
	2. Environmental monitoring	
	a. Definition and purpose	
	b. Cleanroom- Concept, classification, prevention of	
	contamination in clean rooms	
	c. Routine Environmental monitoring programme	
	in pharmaceutical industries-	
	Air monitoring, Surface monitoring and	
	Personnel monitoring.	
	d. Bioburden test	
	3. Environmental Impact Assessment- Concept and Brief	
	introduction	
	4. Bioremediation and Bioleaching	
	a. Bioremediation	
	i.Definition	
	ii.Types	
	iii. Applications.	
	b. Bioleaching	

i. Introduction	
ii. Microorganisms involved	
iii. Chemistry of Microbial leaching	
iv. Laboratory scale and pilot scale leaching	
v. In situ leaching - Slope, heap	
vi. Leaching of Copper and Uranium	

- 1. Environmental Pollution by Chemicals Walker, Hulchiason.
- 2. Biochemistry and Microbiology of Pollution Higgins and Burns.
- 3. Environmental Pollution Laurent Hodge, Holt.
- 4. Waste Water Treatment Datta and Rao (Oxford and IBH)
- 5. Sewage and waste treatment Hammer
- 6. Environment Chemical Hazards Ram Kumar (Swarup and Sons, New Delhi).
- 7. Environment Pollution Timmy Katyal (Satke Anmol Pub. New Delhi).
- 8. Ecology of Polluted Water Vol. II Anand Kumar (Aph Pub. Co. New Delhi).
- 9. Environment Pollution and Management of waste waters by Microbial Techniques Pathade and Goel (ABD Pub. Jaipur).
- 10. Current Topics in Environmental Sciences Tripathi and Pandey (ABD Pub. Jaipur).
- 11. Environmental Impact Assessment R. K. Trivedy

Microbial Limit and Bioburden Tests, 2nd edition - Lucia Clontz (CRCpress)

SEC-SF	FOOD FERMENTATION TECHNIQUES	No. of
		Hours
	Theory :30 Hours (Credits -2)	per unit/
	Theory .50 Hours (Creams 2)	credit
Course Outo	omes - Upon successful completion of course, students are expected to be a	ble to -
CO1: Under	stand the role of microorganisms in fermentation process	
CO2: Start si	mall scale food industry	
CO3: Apply	their knowledge in designing techniques for food processing	
CO4: Explain	n the role and health benefits of microorganism in probiotic food.	
UNIT I	1. Fermented Foods	15
	Definition, types, advantages and health benefits	
	2. Milk Based Fermented Foods	

	Dahi, Yogurt, Buttermilk (Chach) and cheese: Preparation of	
	inoculums, types of microorganisms and production process	
	3. Grain Based Fermented Foods	
	Soy sauce, Bread, Idli and Dosa: Microorganisms and production	
	process	
UNIT II	1. Vegetable Based Fermented Foods	15
	Pickels, Saeurkraut: Microorganisms and production process	
	2. Fermented Meat and Fish	
	Types, microorganisms involved, fermentation process	
	3. Probiotic Foods	
	Definition, types, microorganisms and health benefits	

- 1. Yadav JS, Grover, S and Batish VK (1993) A comprehensive dairy microbiology, Metropolitan
- 2. Jay JM, Loessner MJ, Golden DA (2005) Modern Food Microbiology, 7th edition. Springer

PRACTICAL SEMESTER V

PRACTICAL -	IMMUNOLOGY AND MEDICAL MICROBIOLOGY						
I	(Credits -4)						
	Major:						
	1. Isolation of following pathogens from clinical samples						
	(wherever possible) and identification of the same by						
	morphological, cultural and biochemical characteristics.						
	a. Pseudomonas aeruginosa						
	b Klebsiella pneumoniae						
	c. Candida albicans						
	2. Determination of MIC of streptomycin against <i>E.coli</i> by broth						
	method						

	Minor:					
	1. Determination of sensitivity of common pathogens to antibiotics					
	by paper disc method.					
	2. Serological tests:					
	a. Widal test - Quantitative					
	b. Demonstration of Enzyme Linked Immunosorbent Assay					
	(ELISA)					
	3. Haematology:					
	a. Estimation of haemoglobin by Sahli's method.					
	b. Determination of ESR of the blood sample (Westergren					
	method)					
	c. Determination of PCV					
	d. Total and differential blood cells count.					
	4. Urine analysis					
	a. Physical and chemical examination of urine.					
	b. Test for protein (Acetic acid test)					
	c. Test for ketone bodies (Rothra's test)					
	d. Test for bile salt.					
PRACTICAL II	FOOD AND INDUSTRIAL MICROIOLOGY					
	(Credits -4)					
	Major:					
	1. Assay of amylase by DNSA method (Graphical estimation)					
	2. Bio-assay of Vitamin B12					
	3. Bio-assay of Penicillin.					
	4. Microbial testing of Water:					
	a. Presumptive, confirmed and completed test.					
	b. MPN					
	c. SPC of tomato sauce.					
	5. Production of wine and examination for pH, colour and alcohol					
	content.					
	Minor:					
	1. Citric acid fermentation, recovery and estimation by titration.					
	2. Amylase production by using <i>Bacillus</i> species.					

3. Isolation of lactic acid bacteria from fermented food.
4. Examination of milk by
Direct microscopic count (DMC)
5. Sauerkraut production.

SEMESTER VI

PRACTICAL III	VIROLOGY AND MICROBIAL GENETICS (Credits -4)
	Major:
	1. Isolation of coliphages from sewage.
	2. Effect of U.V. light on bacteria and graphical presentation of result.
	3. Isolation of auxotrophic mutants by replica plate technique
	4. Transfer of genetic material by transformation in E. coli
	5. Isolation of chromosomal DNA from bacteria (J. Marmurs method)
	Minor:
	1. Electrophoretic separation of DNA.
	2. Isolation of streptomycin - resistant mutants (gradient plate technique)
	3. Isolation of Lac negative mutants of <i>E. coli</i>
	AGRICULTURAL AND ENVIRONMENTAL MICROBIOLOGY
PRACTICAL IV	(Credits -4)
	Major:
	1. Isolation of Azotobacter fromsoil.
	2. Isolation of Xanthomonas from infected citrus fruit.
	3. Isolation of Rhizobium from root nodules.
	4. Isolation of phosphate solublising bacteria from soil.
	5. Determination of BOD of sewage
	Minor:
	1. Determination of texture, color, pH of soil.
	2. Estimation of Calcium and Magnesium from soil (EDTA method)
	3. Determination of organic carbon content of soil (Walkley and Black
	method)
	4. Determination of COD
	of sewage.

- 1. Medical Lab Technology-Ramnikand Sood, Jaypee brothers (Medical pub. New Delhi)
- 2. Practical Biochemistry Plummer
- 3. APHA (American Public Health Association) Handbook
- 4. Soil, Plant and Water Analysis-P. C. Jaiswal
- 5. Biochemical methods-S. Sadasivam, A. Manickam
- 6. Practical Biochemistry- J. Jayraman
- 7. Practical Microbiology R.C. Dubey, D. K. Maheshwari, S. Chand & Co. Ltd.

Practical Examination

A) The practical examination will be conducted on three (3) consecutive days for not less than 6 hours on each day of the practical examination.

B) Each candidate must produce a certificate from the Head of the Department in his/her college stating that he/she has completed in a satisfactory manner the practical course on the guidelines laid down from time to time by Academic Council on the recommendation of Board of studies and has been recorded his/her observations in the laboratory journal and written a report on each exercise performed. Every journal is to be checked and signed periodically by a member teaching staff and certified by the Head of the Department at the end of staff and certified by the Head of the Department at the end of the year. Candidates are to produce their journal at the time of practical examination. Candidates have to visit the least

Two (2) places of Microbiological interest (Pharmaceutical industry, Dairy, Research institutes etc.) and submit the report of their visit at the time of examination. The report should be duly certified by the Head of the Department.

Nature of question paper and distribution of marks for B.Sc. Part III Microbiology Practical Examination

Practicals I, II, III & IV

Q.1 Major Experiment 20 Marks

Q. 2 Minor Experiment 15 Marks

Q.3 Journal 05 Marks

SPOTTING 10 Marks

VIVA-VOCE 10 Marks

(On practicals not attempted in the examination)

TOUR REPORT: 20 MARKS

Nature of Question Paper

Instruction	ns: 1) A	all the questions	are compu	lsory.	
	2 Fi	gures to the righ	t indicate f	ull marks.	
	3)D	raw neat labeled	diagrams	wherever nec	essary.
	4) U	se of calculator i	s allowed.		
Time: 2 ho	urs				Total Marks: 35
		<u>P</u> A	APER IX/	X/XI/XII	
Q.1.A Sel	ect cori	rect alternativ	e.		(5)
i)					
	a)	b)	c)	d)	
ii)					
	a)	b)	c)	d)	
iii)					
	a)	b)	c)	d)	
iv)				40	
,	a)	b)	c)	d)	
v)	د.	1_\	-)	٦/	
	a)	b)	c)	d)	
Q.1 B Fill (2)	in the	blanks			
i)					
ii)					
Q.2. Atter (16)		y Two.			
i)					
ii)					
iii)					

Q.3. Attempt any three (12)

- i)
- ii)
- iii)
- iv)
- v)

Instruction to paper setters: Equal weight age should be given to all units.

For Continuous Internal Examination: (15 marks)

Mandatory 1) Presenty ---- (5 marks)

*Select any one for B.Sc.III ---- (10 marks)

- 1) Unit test
- 2) Home assignment
- 3) Project
- 4) Seminar

SCHEME OF MARKING (THEROY)

Sem.	Core	Marks	Evaluation	Paper	Answer	Standard
	Course				Books	of passing
V	DSE E 1	35	Semester	Each paper	As per	35%
			wise	of 35 marks	Instruction	(10 1)
						(12 marks)
V	DSE E 2	35	Semester	Each paper	As per	35%
			wise	of 35 marks	Instruction	(10 1)
						(12 marks)
V	DSE E 3	35	Semester	Each paper	As per	35%
			wise	of 35 marks	Instruction	(1.5
						(12 marks)
V	DSE E4	35	Semester	Each paper	As per	35%
			wise	of 35 marks	Instruction	(10 1)
						(12 marks)
			Semester wise Semester	Each paper of 35 marks Each paper	As per Instruction As per	1

^{*}Yet it is not finalized

SCHEME OF MARKING (CIE) Continuous Internal Evaluation

Sem.	Core	Marks	Evaluation	Paper	Answer	Standard
	Course				Books	of passing
V	DSE E 1	15	Semester	one	As per	35%
			wise		Instruction	(6 marks)
	DSE E 2	15	Semester	one	As per	35%
			wise		Instruction	(6 marks)
	DSE E 3	15	Semester	one	As per	35%
			wise		Instruction	(6 marks)
	DSE E 4	15	Semester	one	As per	35%
			wise		Instruction	(6 marks)

SCHEME OF MARKING (PRACTICAL)

Sem.	Course	Marks	Evaluation	Sections	Standard of passing
V AND VI	Practical I,	200	Annual	As per	35%
	II, III &IV			Instruction	

*A separate passing is mandatory