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Abstract

A closure operator on the lattice of all ideals of a bounded 0-distributive lattice is introduced. It
is observed that the ideals which are closed with respect to this closure operator are α-ideals in it and
conversely.
2020 Mathematical Sciences Classification: 06D75.
Keywords and Phrases: 0- distributive lattice, ideal, closure operator, homomorphism, α-ideal

1 Introduction
As a generalization of the concept of distributive lattices on one hand and pseudocomplemented lattices on
the other, 0- distributive lattices are introduced by Varlet [14]. Jayaram [6] defined and studied α-ideals in
0- distributive lattices. Additional properties of α-ideals in a 0-distributive lattice are obtained by Pawar
et al. [8, 9]. Separation theorem for α-ideals in a 0-distributive lattice is proved in [5]. In [8], the authors
have obtained a characterisation of an α-ideal using a closure operator on the lattice of all ideals of a 0-
distributive lattice. The notion of closed filter in CI-algebra with some characteristic properties, is studied
by Sabhapandit et al. [11]. Subbarayan [12] has made contributions in different aspects of 0-distributive
lattices. In this paper we introduce a new closure operator on the lattice of all ideals of a 0-distributive
lattice and characterise α-ideals in terms of the ideals which are closed with respect to this closure operator.
Further it is observed that in a given 0- distributive lattice the ideals which are closed under this closure
operator are the α-ideals in it and conversely.

2 Preliminaries
Following are some basic concepts and results needed in the sequel from references. For other non-explicitly
stated elementary notions please refer to [3]. A lattice L with 0 is said to be 0 -distributive if a ∧ b = 0
and a ∧ c = 0 imply a ∧ (b ∨ c) = 0 for any a, b, c in L. Throughout this paper L will denote a bounded
0-distributive lattice unless otherwise specified. For a lattice L, I(L) denotes the set of all ideals of L. Then
(I(L),∧,∨) is a lattice where I ∧ J = I ∩ J and I ∨ J = (I ∪ J ], for any two ideals I and J of L. For any
non-empty subset A of L, define A∗ = {x ∈ L : x ∧ a = 0, for each a ∈ A}. By A∗∗ we mean (A∗)∗. Note
that when A = {a} then A∗ = (a]∗ and also denoted by (a)∗. An ideal I in L is called an annihilator ideal if
I = A∗, for a non-empty subset A of L. Let L and L′ denote bounded 0-distributive lattices and f : L→ L′

be a homomorphism. f is called an annihilator preserving homomorphism if f (A∗) = {f(A)}∗ for any
non-empty subset A of L. An ideal I of L is called an α-ideal if {x}∗∗ ⊆ I for each x ∈ I. Closure operator
on L is a mapping f : L→ L satisfying the following conditions: (i) x ≤ f(x), (ii) x ≤ y ⇒ f(x) ≤ f(y) and
(iii) f(f(x)) = f(x).

Result 2.1. (Varlet [14]). A lattice L with 0 is 0 - distributive if and only if A∗ is an ideal for any non-empty
subset A of L.

Following result can be proved easily.

Result 2.2. In a 0-distributive lattice L, for all a, b, c ∈ L we have
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(i) {a}∗∗ ∩ {b}∗∗ = {a ∧ b}∗∗.
(ii) {a}∗ ∩ {b}∗ = {a ∨ b}∗.

(iii) {a}∗∗ = {b}∗∗ ⇒ {a ∧ c}∗∗ = {b ∧ c}∗∗.

Result 2.3. (Pawar and Mane [8]). In a bounded 0-distributive lattice L following statements are equivalent.
(i) For x, y ∈ L, {x}∗ = {y}∗, x ∈ I ⇒ y ∈ I.

(ii) I = U {{x}∗∗ : x ∈ I}.
(iii) For x, y ∈ L, h(x) = h(y), x ∈ I ⇒ y ∈ I, where h(x) = {M : M is a minimal prime ideal containing

x}.
(iv) I is an α-ideal.

Result 2.4. (Jayaram [5]). Let L be a 0-distributive lattice. Let I be an α-ideal and S be a meet sub semi
lattice of L such that I ∩ S = ∅. Then there exists a prime α-ideal P in L containing I and disjoint with S.

Result 2.5. (Pawar and Mane [8]). Every annihilator ideal in a 0-distributive lattice L is an α-ideal.

Result 2.6. (Pawar and Khopade [9]). Let L and L′ be any two bounded 0-distributive lattices and let
f : L→ L′ be an annihilator preserving onto homomorphism, Then

(i) If I is an α-ideal of L, then f(I) is an α-ideal of L′.
(ii) If I ′ is an α-ideal of L′, then f−1(I ′) is an α-ideal of L.

3 Closure operator
In this section we introduce a closure operator on I(L).

Define B(L) = {{a}∗∗ : a ∈ L}. L being 0-distributive lattice, B(L) ⊆ I(L) (by Result 2.1) but B(L) is
not necessarily a sub lattice of the lattice I(L). For this consider the following example.t1
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Figure 3.1

Example 3.1. Consider the bounded 0 - distributive lattice L = {0, a, b, c, d, e, 1} as shown by the Hasse
Diagramme in Figure 3.1. Here {a}∗∗ = {0, a, b} and {c}∗∗ = {0, c}. Hence {a}∗∗ ∨ {c}∗∗ = {0, a, b, c, d} /∈
B(L). Hence the set B(L) is a poset under set inclusion but need not be a sub lattice of the lattice I(L).

For {a}∗∗, {b}∗∗ ∈ B(L). Define {a}∗∗ u {b}∗∗ = {a ∧ b}∗∗ and {a}∗∗ t {b}∗∗ = {a ∨ b}∗∗. Then we have

Theorem 3.1. (B(L),u,t) is a bounded lattice.

Proof. Obviously, {a ∧ b}∗∗ is the infimum of {a}∗∗ and {b}∗∗ in (B(L),⊆). To prove {a ∨ b}∗∗ is the
supremum of {a}∗∗ and {b}∗∗ in (B(L),⊆).{a∨ b}∗∗ is an upper bound of {a}∗∗ and {b}∗∗ in (B(L),⊆). Let
{c}∗∗ be any other upper bound of {a}∗∗ and {b}∗∗ in (B(L),⊆). Let t ∈ {a∨b}∗∗. Then (t]∩{a∨b}∗ = {0}.
By Result 2.2 (ii) we get (t] ∩ [{a}∗ ∩ {b}∗] = {0}, which implies (t] ∩ {a}∗ ⊆ {b}∗∗. But as {b}∗∗ ⊆ {c}∗∗
we get (t]∩ {a}∗ ⊆ {c}∗∗. Thus (t]∩ {a}∗ ∩ {c}∗ = {0}, implies (t]∩ {c}∗ ⊆ {a}∗∗. Again, as {a}∗∗ ⊆ {c}∗∗,
we get (t] ∩ {c}∗ ⊆ {c}∗∗, that is (t] ∩ {c}∗ = {0}. Therefore (t] ⊆ {c}∗∗ which yields t ∈ {c}∗∗. This shows
that {a∨ b}∗∗ ⊆ {c}∗∗ and hence {a∨ b}∗∗ is the supremum of {a}∗∗ and {b}∗∗ in (B(L),⊆). As {0}∗∗ = {0}
and {1}∗∗ = L belong to B(L), (B(L),u,t) is a bounded lattice.

Corollary 3.1. The lattice (B(L),u,t) is a homomorphic image of the lattice L.
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Proof. Define θ : L → B(L) by θ(a) = {a}∗∗ for each a ∈ L. Then θ(a ∧ b) = {a ∧ b}∗∗ = {a}∗∗ u {b}∗∗ =
θ(a) u θ(b) and θ(a ∨ b) = {a ∨ b}∗∗ = {a}∗∗ t {b}∗∗ = θ(a) t θ(b) hold for all a, b ∈ L. Hence θ is a
homomorphism. As θ is onto, the result follows.

Remark 3.1. Note that the homomorphism θ is not necessarily one-one. For this consider the 0 - distributive
lattice in Example 3.1. Here for a 6= b in L we have {a}∗∗ = {b}∗∗.

For any ideal I of L, define δ(I) = {{a}∗∗ : a ∈ I} and for any ideal I of B(L), define
←−
δ (I) ={

a ∈ L : {a}∗∗ ∈ I
}

. With these notations we prove

Theorem 3.2.
(i) δ(I) is an ideal of B(L), for any ideal I of L.

(ii)
←−
δ (Ī) is an ideal of L, for any ideal Ī of B(L).

(iii) For any two ideals I and J of L, I ⊆ J ⇒ δ(I) ⊆ δ(J).

(iv) For any two ideals Ī and J̄ of B(L), Ī ⊆ J̄ ⇒←−δ (Ī) ⊆ ←−δ (J̄).

Proof. (i). Let I be any ideal of L. As 0 ∈ I, {0}∗∗ = {0} ∈ δ(I). Hence δ(I) is non empty. Let
{a}∗∗, {b}∗∗ ∈ B(L) such that {a}∗∗ ⊆ {b}∗∗ and {b}∗∗ ∈ δ(I). Then {b}∗∗ = {x}∗∗ for some x ∈ I. Thus
{a}∗∗ = {a}∗∗u{b}∗∗ = {a}∗∗u{x}∗∗ = {a∧x}∗∗. As a∧x ∈ I, we get {a}∗∗ ∈ δ(I). Let {a}∗∗, {b}∗∗ ∈ δ(I).
Therefore {a}∗∗ = {x}∗∗ and {b}∗∗ = {y}∗∗ for some x, y ∈ I. Hence {a}∗∗ t {b}∗∗ = {x}∗∗ t {y}∗∗ =
{x ∨ y}∗∗. As x ∨ y ∈ I, we get {x ∨ y}∗∗ ∈ δ(I) Hence {a}∗∗ t {b}∗∗ ∈ δ(I). Therefore δ(I) is an ideal of
B(L).

(ii) Let Ī be any ideal of B(L) · {0}∗∗ = {0} ∈ Ī implies 0 ∈ ←−δ (Ī). Hence
←−
δ (Ī) is non-empty. Let a, b ∈ L

such that a 5 b and b ∈ ←−δ (Ī). Then {a}∗∗ ⊆ {b}∗∗ and {b}∗∗ ∈ Ī. Ī being an ideal we get {a}∗∗ ∈ Ī. But

then a ∈ ←−δ (Ī). Let a, b ∈ ←−δ (Ī). Then {a}∗∗, {b}∗∗ ∈ Ī implies {a}∗∗ t {b}∗∗ = {a ∨ b}∗∗ ∈ Ī. Therefore a∨
b ∈ ←−δ (Ī). This proves

←−
δ (Ī) is an ideal of L.

(iii) Let I and J be two ideals of L such that I ⊆ J . Let {a}∗∗ ∈ δ(I). Then {a}∗∗ = {x}∗∗ for some
x ∈ I. But then, since I ⊆ J , we get x ∈ J . This in turns gives {a}∗∗ ∈ δ(J). Hence δ(I) ⊆ δ(J).

(iv) Let Ī and J̄ be any two ideals of B(L) such that Ī ⊆ J̄ . Let x ∈ ←−δ (Ī). Then {x}∗∗ ∈ Ī implies

{x}∗∗ ∈ J̄ . Hence x ∈ ←−δ (J̄) and the result follows.

As δ(I) is an ideal of B(L), for any ideal I of L, we have the mapping δ : I(L)→ I(B(L)) is well defined,
where I(B(L)) denotes the lattice of all ideals of the lattice B(L). Further we have

Theorem 3.3. δ : I(L)→ I(B(L)) is a {0, 1} homomorphism.

Proof. Let I and J be any ideals in I(L). δ(I ∩ J) ⊆ δ(I) ∩ δ(J) (by Theorem 3.2 - (iii)). Let {a}∗∗ ∈
δ(I) ∩ δ(J). Then {a}∗∗ ∈ δ(I) implies {a}∗∗ = {i}∗∗ for some i ∈ I and {a}∗∗ ∈ δ(J) gives {a}∗∗ = {j}∗∗
for some j ∈ J . Thus {a}∗∗ = {i}∗∗ u {j}∗∗ = {i ∧ j}∗∗. As i ∧ j ∈ I ∩ J , we get {a}∗∗ ∈ δ(I ∩ J). This
shows that δ(I) ∩ δ(J) ⊆ δ(I ∩ J). Combining both the inclusions we get δ(I ∩ J) = δ(I) ∩ δ(J).

Now, again by Theorem 3.2 - (iii), δ(I)∨ δ(J) ⊆ δ (I ∨ J). Let {a}∗∗ ∈ δ(I ∨J). Hence {a}∗∗ = {y}∗∗ for
some y ∈ I ∨ J . Therefore y ≤ i∨ j for some i ∈ I and j ∈ J . This yields {y}∗∗ ⊆ {i∨ j}∗∗ = {i}∗∗ t {j}∗∗.
Therefore {a}∗∗ = {y}∗∗ ∈ δ(I)∨ δ(J). Hence δ(I ∨ J) ⊆ δ(I)∨ δ(J). Combining both the inclusions we get
δ(I ∨ J) = δ(I) ∨ δ(J).

This proves that δ : I(L)→ I(B(L)) is a homomorphism. Again δ((0]) = {{0}∗∗} = {{0}} and δ((1]) =
{{1}∗∗} = {L}, shows δ is a {0, 1} homomorphism.

By Theorem 3.2, we get two mappings δ : I(L) → I(B(L)) and
←−
δ : I(B(L)) → I(L). Hence δ ◦ ←−δ :

I(B(L))→ I(B(L)) and
←−
δ ◦ δ : I(L)→ I(L). About these two mappings we have

Theorem 3.4.
(i) δ ◦←−δ is an identity mapping on I(B(L)).

(ii)
←−
δ ◦ δ is a closure operator on I(L).
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Proof. (i) Let Ī be any ideal of B(L). Let {x}∗∗ ∈ δ ◦ ←−δ (Ī) = δ(
←−
δ (Ī)). Hence {x}∗∗ = {y}∗∗ for some

y ∈ ←−δ (Ī). But then {y}∗∗ ∈ Ī, which implies {x}∗∗ ∈ Ī. This gives δ ◦←−δ (Ī) ⊆ Ī. Conversely, let {x}∗∗ ∈ Ī.

Then x ∈ ←−δ (Ī) and consequently {x}∗∗ ∈ δ(←−δ (Ī)) (since
←−
δ (Ī) is an ideal of L ). Hence Ī ⊆ δ ◦←−δ (Ī). From

both the inclusions we get δ ◦←−δ (Ī) = Ī. Hence δ ◦←−δ is an identity mapping on I(B(L)).
(ii) Let I ∈ I(L) and x ∈ I. Then {x}∗∗ ∈ δ(I) and by Theorem 3.2 - (i), δ(I) is an ideal of B(L), which

yields x ∈ ←−δ ◦ δ(I). Hence I ⊆ ←−δ ◦ δ(I). (3.1)

Let I, J ∈ I(L) and I ⊆ J . As δ and
←−
δ are isotone mappings (by Theorem 3.2),

we get
←−
δ ◦ δ(I) ⊆ ←−δ ◦ δ(J). (3.2)

Finally, let I ∈ I(L). As I ⊆ ←−δ ◦δ(I), applying (3.2) we get
←−
δ ◦δ(I) ⊆ ←−δ ◦δ

(←−
δ ◦δ(I)

)
. Conversely, let

x ∈ ←−δ ◦δ
(←−
δ ◦ δ(I)

)
. Then {x}∗∗ ∈ δ

(←−
δ ◦ δ(I)

)
implies {x}∗∗ = {y}∗∗ for some y ∈ ←−δ ◦ δ(I). But then

{y}∗∗ ∈ δ(I), which implies {x}∗∗ ∈ δ(I). This gives x ∈ ←−δ ◦ δ(I). This proves
←−
δ ◦δ

(←−
δ ◦δ(I)

)
⊆ ←−δ ◦δ(I).

Combining both the inclusions we get
←−
δ ◦δ

(←−
δ ◦ δ(I)

)
=
←−
δ ◦δ(I). (3.3)

From (3.1), (3.2) and (3.3) we get
←−
δ ◦ δ is a closure operator on I(L).

Remark 3.2. The mapping δ : I(L) → I(B(L)) is a homomorphism follows from Theorem 3.3. Let Ī be

any ideal of B(L). As
←−
δ (Ī) is an ideal of L and δ ◦ ←−δ (Ī) = Ī, we get the mapping δ : I(L) → I(B(L)) is

onto. Hence the lattice I(B(L)) is a homomorphic image of the lattice I(L).

4 α - ideals

In this section we show that the ideals in L which are closed with respect to the closure operator
←−
δ ◦δ defined

on I(L) are α-ideals in L and conversely. Let C(L) denote the set of all ideals in L which are closed with

respect to the closure operator
←−
δ ◦δ defined on I(L). Thus C(L) =

{
I ∈ I(L) :

←−
δ ◦ δ(I) = I

}
. Obviously,

(0] and (1] belong to C(L). Hence C(L) is a non-empty subset of I(L) but not necessarily a sublattice of the
lattice I ( L). This follows by the 0-distributive lattice given in Example 3.1. Here C(L) = {(0], (b], (c]} and
(b] ∨ (c] = (d]. As (d] /∈ C(L), the subset C(L) is not a sublattice of the lattice I(L). Though C(L) does not
form a sublattice of the lattice I(L), it forms a lattice on its own. This we prove in the following theorem.

Theorem 4.1. (C(L),Z,Y) is a bounded lattice where Z and Y are defined by I Z J = I ∩ J and I Y J =←−
δ ◦ δ(I ∨ J) for I, J ∈ C(L)

Proof. (i) First we prove that for I, J ∈ C(L), I ∩ J ∈ C(L). As
←−
δ and δ are isotone mappings, we get

←−
δ ◦ δ

is also isotone. Hence
←−
δ ◦ δ(I ∩ J) ⊆ ←−δ ◦ δ(I) ∩←−δ ◦ δ(J).

Let x ∈ ←−δ ◦ δ(I) ∩←−δ ◦ δ(J). Then {x}∗∗ ∈ δ(I) ∩ δ(J) = δ(I ∩ J). This gives x ∈ ←−δ ◦ δ(I ∩ J). Hence←−
δ ◦δ(I)∩←−δ ◦δ(J) ⊆ ←−δ ◦δ(I∩J). Combining both the inclusions we get

←−
δ ◦δ(I∩J) =

←−
δ ◦δ(I)∩←−δ ◦δ(J) = I∩J

(since I, J ∈ C(L) ). This proves I ∩J ∈ C(L). Thus the infimum of I, J ∈ C(L) is I ∩J . Hence I∧̄J = I ∩J .

(ii) First note that, by Theorem 3.4 - (ii),
←−
δ ◦ δ(I) ∈ C(L), for any ideal I of L. Let I, J ∈ C(L). Then

I =
←−
δ ◦ δ(I) ⊆ ←−δ ◦ δ(I ∨ J) and J =

←−
δ ◦ δ(J) ⊆ ←−δ ◦ δ(I ∨ J) (since

←−
δ ◦ δ is isotone). Thus

←−
δ ◦ δ(I ∨ J) is

an upper bound of I and J in C(L). Let K ∈ C(L), such that I ⊆ K and J ⊆ K. Then I ∨ J ⊆ K implies←−
δ ◦ δ(I ∨ J) ⊆ ←−δ ◦ δ(K) = K (since K ∈ C(L)). This shows that

←−
δ ◦ δ(I ∨ J) is the supremum of I and J

in C(L) i. e. I Y J =
←−
δ ◦ δ(I ∨ J). As (0] ∈ C(L) and L ∈ C(L), (C(L),Z,Y) is a bounded lattice.

We know that the lattice I(B(L)) is a homomorphic image of the lattice I(L) (see Remark 3.2). But
interestingly we have

Theorem 4.2. The lattice C(L) is isomorphic with the lattice I(B(L)).

Proof. Define the mapping ψ : C(L) → I(B(L)) by ψ(I) = δ(I) for each I ∈ C(L), which is clearly a well
defined mapping.

(i) Let ψ(I) = ψ(J) for I, J ∈ C(L). Then we have δ(I) = δ(J). Therefore
←−
δ ◦δ(I) =

←−
δ ◦δ(J) which implies

I = J (since I, J ∈ C(L)). This shows that ψ is one-one.
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(ii) Let Ī be any ideal of B(L). Then
←−
δ (Ī) is an ideal of L (by Theorem 3.2 - (ii)) and δ ◦ ←−δ (Ī) = Ī (by

Theorem 3.4 - (i)). Then
←−
δ ◦δ(←−δ (Ī)) =

←−
δ (δ(

←−
δ (Ī))) =

←−
δ (δ ◦←−δ (Ī)) =

←−
δ (Ī). This shows that

←−
δ (Ī) ∈ C(L).

As ψ(
←−
δ (Ī)) = δ(

←−
δ (Ī)) = δ ◦←−δ (Ī) = Ī, we get ψ is onto.

(iii) Let I, J ∈ C(L). Then by definition of ψ and by Theorem 3.3 we get, ψ(I∧̄J) = ψ(I ∩ J) = δ(I ∩ J)

= δ(I) ∩ δ(J) = ψ(I) ∩ ψ(J). And by definition of Y in C(L) we get ψ(I Y J) = δ(I Y J) = δ
(←−
δ ◦ δ(I ∨ J)

)
= δ(I ∨ J) (since δ ◦ ←−δ is an identity map). Thus ψ(I Y J) = δ(I ∨ J) = δ(I) ∨ δ(J) = ψ(I) ∨ ψ(J). This
proves that ψ is a homomorphism. From (i) - (iii) we get ψ is an isomorphism.

Following theorem gives a necessary and sufficient conditions for an ideal I of L to be a member of C(L).

Theorem 4.3. For any ideal I of L, following statements are equivalent.
(i) I ∈ C(L).

(ii) For x, y ∈ L, {x}∗∗ = {y}∗∗, x ∈ I ⇒ y ∈ I.
(iii) For x, y ∈ L, {x}∗ = {y}∗ x ∈ I ⇒ y ∈ I.
(iv) I = ∪{{x}∗∗ : x ∈ I}.
(v) For x, y ∈ L, h(x) = h(y), x ∈ I ⇒ y ∈ I,

where h(x) = {M : M is a minimal prime ideal containing x}.
(vi) I is an α-ideal.

Proof. The equivalence of the statements (iii) to (vi) follows by Result 2.3.
(ii) ⇔ (iii): As {x}∗∗ = {y}∗∗ ⇔ {x}∗ = {y}∗ for any x, y ∈ L, the equivalence follows.
(i)⇒ (ii): Let I ∈ C(L). Let x, y ∈ L such that {x}∗∗ = {y}∗∗ and x ∈ I. As x ∈ I, we have {x}∗∗ ∈ δ(I).

But then, by assumption, we get {y}∗∗ ∈ δ(I). This gives y ∈ ←−δ ◦ δ(I). Again by assumption that I ∈ C(L),
we get y ∈ I. Thus the implication follows.

(ii) ⇒ (i): Let I ∈ I(L) satisfying condition in (ii). By Theorem 3.4, we have I ⊆ ←−δ ◦ δ(I). To prove←−
δ ◦ δ(I) ⊆ I. On contrary assume that

←−
δ ◦ δ(I) * I. Then there exists x ∈ ←−δ ◦ δ(I) such that x /∈ I. Then

{x}∗∗ ∈ δ(I) which implies {x}∗∗ = {y}∗∗ for some y ∈ I. But then, by assumption, x ∈ I; a contradiction.

Hence
←−
δ ◦δ(I) ⊆ I. Combining both the inclusions, we get

←−
δ ◦δ(I) = I. Hence I ∈ C(L) and the implication

follows. Hence all the statements are equivalent.

Using the property that I ∈ C(L) if and only if I is an α-ideal, proved in above theorem, we get

Corollary 4.1. (a] ∈ C(L) if and only if (a] = {a}∗∗ for any a ∈ L.

Proof. Let (a] ∈ C(L). Then by Theorem 4.3, (a] is an α-ideal of L. This gives {a}∗∗ ⊆ (a] (by definition of
α-ideal). As we obviously have (a] ⊆ {a}∗∗, the proof of if part follows. Conversely, suppose (a] = {a}∗∗. We
know that every annihilator ideal is an α-ideal, therefore {a}∗∗ = (a] is an α-ideal. Thus again by Theorem
4.3, we get (a] ∈ C(L).

I∗ ∈ C(L) for any ideal I in L, because I∗ is an α-ideal of L (see Result 2.5). Hence we have

Corollary 4.2. The lattice (C(L),Z,Y) is a pseudo complemented lattice.

Define A0(L) = {{x}∗ : x ∈ L}. Then
(
A0(L), ∧̂, ∨̃

)
is a lattice, where {x}∗∧̂{y}∗ = {x ∨ y}∗ and

{x}∗∨̃{y}∗ = {x ∧ y}∗. This lattice is called as a lattice of all annulets of L. For any ideal I in L, the set
{{x}∗ : x ∈ I} is a filter in A0(L) and for any filter F in A0(L), the set {x ∈ L : {x}∗ ∈ F} is an ideal of
L. Let F (A0(L)) denote the lattice of all filters in A0(L). Then the maps α : I(L) → F (A0(L)) defined
by α(I) = {{x}∗ : x ∈ I} and β : F (A0(L))→ I(L) defined by β(F ) = {x ∈ L : {x}∗ ∈ F} are well defined
isotone maps.

We need the following results from [8]:

Lemma 4.1. ([8], Theorem 9). The map β ◦ α : I(L)→ I(L) is a closure operator on I(L).

Lemma 4.2. ([8] Theorem 10).
For any ideal I in L, following statements are equivalent.

(i) I is an α-ideal.
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(ii) β ◦ α(I) = I.

Using above two lemmas and Theorem 4.3 we get

C(L) =
{
I ∈ I(L) :

←−
δ ◦ δ(I) = I

}
= {I ∈ I(L) : β ◦ α(I) = I}. Hence an ideal I in L is closed with respect

to the closure operator
←−
δ ◦ δ if and only if it is closed with respect to the closure operator β ◦ α defined on

I(L). Thus we have

Corollary 4.3. For any ideal I of L,
←−
δ ◦ δ(I) = I if and only if β ◦ α(I) = I.

Let I be an ideal of L. If there exists a prime ideal P of L such that I ⊆ P and P is minimal in the class
of all prime ideals containing I, then P is called a prime ideal belonging to I. We know that any prime ideal
of L need not be an α-ideal. For this consider the lattice L = {0, a, b, c, d, e, 1} whose Hasse diagram is as in
Figure 3.1. The ideal (e] is a prime ideal but not an α-ideal. For, d ∈ (e] but (d]∗∗ = L * (e].

In the following theorem we show that a prime ideal belonging to an α-ideal is an α-ideal.

Theorem 4.4. Let I be an α-ideal of L. Let P be a prime ideal belonging to I, then P is an α ideal.

Proof. Suppose P is not an α-ideal. Hence there exist x, y in L such that {x}∗∗ = {y}∗∗, x ∈ P but y /∈ P
(see Theorem 4.3). Consider the filter F = (L \ P ) ∨ [x ∧ y). Claim that F ∩ I = ∅. Let F ∩I 6= ∅. Select
a ∈ F ∩ I. Then a ∈ F implies a ≥ r ∧ s for some r ∈ (L\P ) and s ≥ x ∧ y. But then a ≥ r ∧ x ∧ y and
therefore r ∧ x ∧ y ∈ I (as a ∈ I ). Since {x}∗∗ = {y}∗∗, using the Result 2.2, we get {r ∧ x}∗∗ = {r ∧ y}∗∗
and hence {r∧x∧y}∗∗ = {r∧y}∗∗. Since r∧x∧y ∈ I and I is an α-ideal, by Theorem 4.3, we get r∧y ∈ I.
Hence r∧ y ∈ P (since I ⊆ P ). Now r∧ y ∈ P , P is a prime ideal and r /∈ P imply y ∈ P ; which contradicts
our assumption. Hence we must have F ∩ I = ∅. Therefore, by Result 2.4, there exists a prime ideal Q
containing I and disjoint with F . Thus Q ⊆ P . Moreover F ∩Q = ∅ and x∧ y ∈ F implies x∧ y /∈ Q. Hence
Q 6= P (since x ∈ P ⇒ x ∧ y ∈ P ) i. e. Q ⊂ P . But this contradicts to the fact that P is minimal in the
class of all prime ideals containing I. Hence we must have P is an α-ideal.

Making an appeal to Theorem 4.1, Theorem 4.3 and Result 2.6, we establish

Corollary 4.4. Let L and L′ be bounded 0- distributive lattices and let f : L → L′ be an annihilator
preserving onto homomorphism. Then we have

(i) If I ∈ C(L), then f(I) ∈ C (L′).
(ii) If I ′ ∈ C (L′), then f−1 (I ′) ∈ C(L).

5 Conclusion
The present investigation provides a new way to define closure operator on the lattice of all ideals of a
bounded 0 - distributive lattice. Moreover the ideals closed with respect to this closure operator are α−
ideals. Therefore this work will motivate and useful to study more properties of α− ideals.
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