CLOSURE OPERATOR AND α -IDEALS IN 0-DISTRIBUTIVE LATTICES By

S. S. Khopade¹, S. P. Thorat² and Laxmi Rathour³

¹Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Maharashtra, India-416209 ²Vivekanand College (Empowered Autonomous), Kolhapur, Maharashtra, India-416003 ³Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl, Mizoram, India-796012

Email: santajikhopade@gmail.com, thoratsanjay15@gmail.com, laxmirathour817@gmail.com (Received: October 08, 2023; In format: October 29, 2023; Revised: June 09, 2024;

Accepted: June 10, 2024)

DOI: https://doi.org/10.58250/jnanabha.2024.54138

Abstract

A closure operator on the lattice of all ideals of a bounded 0-distributive lattice is introduced. It is observed that the ideals which are closed with respect to this closure operator are α-ideals in it and conversely.

2020 Mathematical Sciences Classification: 06D75.

Keywords and Phrases: 0- distributive lattice, ideal, closure operator, homomorphism, α -ideal

1 Introduction

As a generalization of the concept of distributive lattices on one hand and pseudocomplemented lattices on the other, 0- distributive lattices are introduced by Varlet [14]. Jayaram [6] defined and studied α -ideals in 0- distributive lattices. Additional properties of α -ideals in a 0-distributive lattice are obtained by Pawar et al. [8, 9]. Separation theorem for α -ideals in a 0-distributive lattice is proved in [5]. In [8], the authors have obtained a characterisation of an α -ideal using a closure operator on the lattice of all ideals of a 0distributive lattice. The notion of closed filter in CI-algebra with some characteristic properties, is studied by Sabhapandit et al. [11]. Subbarayan [12] has made contributions in different aspects of 0-distributive lattices. In this paper we introduce a new closure operator on the lattice of all ideals of a 0-distributive lattice and characterise α -ideals in terms of the ideals which are closed with respect to this closure operator. Further it is observed that in a given 0- distributive lattice the ideals which are closed under this closure operator are the α -ideals in it and conversely.

2 Preliminaries

Following are some basic concepts and results needed in the sequel from references. For other non-explicitly stated elementary notions please refer to [3]. A lattice L with 0 is said to be 0 -distributive if $a \wedge b = 0$ and $a \wedge c = 0$ imply $a \wedge (b \vee c) = 0$ for any a, b, c in L. Throughout this paper L will denote a bounded 0-distributive lattice unless otherwise specified. For a lattice $L, \mathcal{I}(L)$ denotes the set of all ideals of L. Then $(\mathcal{I}(L), \wedge, \vee)$ is a lattice where $I \wedge J = I \cap J$ and $I \vee J = (I \cup J)$, for any two ideals I and J of L. For any non-empty subset A of L, define $A^* = \{x \in L : x \wedge a = 0, \text{ for each } a \in A\}$. By A^{**} we mean $(A^*)^*$. Note that when $A = \{a\}$ then $A^* = (a]^*$ and also denoted by $(a)^*$. An ideal I in L is called an annihilator ideal if $I = A^*$, for a non-empty subset A of L. Let L and L' denote bounded 0-distributive lattices and $f: L \to L'$ be a homomorphism. f is called an annihilator preserving homomorphism if $f(A^*) = {f(A)}^*$ for any non-empty subset A of L. An ideal I of L is called an α -ideal if $\{x\}^{**} \subseteq I$ for each $x \in I$. Closure operator on L is a mapping $f: L \to L$ satisfying the following conditions: (i) $x \le f(x)$, (ii) $x \le y \Rightarrow f(x) \le f(y)$ and (iii) $f(f(x)) = f(x)$.

Result 2.1. (Varlet [14]). A lattice L with 0 is 0 - distributive if and only if A^* is an ideal for any non-empty subset A of L.

Following result can be proved easily.

Result 2.2. In a 0-distributive lattice L, for all $a, b, c \in L$ we have

(i) $\{a\}^{**} \cap \{b\}^{**} = \{a \wedge b\}^{**}.$ (ii) $\{a\}^* \cap \{b\}^* = \{a \vee b\}^*.$ (iii) $\{a\}^{**} = \{b\}^{**} \Rightarrow \{a \wedge c\}^{**} = \{b \wedge c\}^{**}.$

Result 2.3. (Pawar and Mane [8]). In a bounded 0-distributive lattice L following statements are equivalent. (*i*) For $x, y \in L$, $\{x\}^* = \{y\}^*, x \in I \Rightarrow y \in I$.

- (ii) $I = U \{ \{x\}^{**} : x \in I \}.$
- (iii) For $x, y \in L$, $h(x) = h(y), x \in I \Rightarrow y \in I$, where $h(x) = \{M : M$ is a minimal prime ideal containing x .
- (iv) I is an α -ideal.

Result 2.4. (Jayaram [5]). Let L be a 0-distributive lattice. Let I be an α -ideal and S be a meet sub semi lattice of L such that $I \cap S = \emptyset$. Then there exists a prime α -ideal P in L containing I and disjoint with S.

Result 2.5. (Pawar and Mane [8]). Every annihilator ideal in a 0-distributive lattice L is an α -ideal.

Result 2.6. (Pawar and Khopade [9]). Let L and L' be any two bounded 0-distributive lattices and let $f: L \to L'$ be an annihilator preserving onto homomorphism, Then

- (i) If I is an α -ideal of L, then $f(I)$ is an α -ideal of L'.
- (ii) If I' is an α -ideal of L', then $f^{-1}(I')$ is an α -ideal of L.

3 Closure operator

In this section we introduce a closure operator on $\mathcal{I}(L)$.

Define $\mathcal{B}(L) = \{\{a\}^{**} : a \in L\}$. L being 0-distributive lattice, $\mathcal{B}(L) \subseteq \mathcal{I}(L)$ (by Result 2.1) but $\mathcal{B}(L)$ is not necessarily a sub lattice of the lattice $\mathcal{I}(L)$. For this consider the following example.

Example 3.1. Consider the bounded 0 - distributive lattice $L = \{0, a, b, c, d, e, 1\}$ as shown by the Hasse Diagramme in Figure 3.1. Here $\{a\}^{**} = \{0, a, b\}$ and $\{c\}^{**} = \{0, c\}$. Hence $\{a\}^{**} \vee \{c\}^{**} = \{0, a, b, c, d\} \notin$ $\mathcal{B}(L)$. Hence the set $\mathcal{B}(L)$ is a poset under set inclusion but need not be a sub lattice of the lattice $\mathcal{I}(L)$.

For $\{a\}^{**}, \{b\}^{**} \in \mathcal{B}(L)$. Define $\{a\}^{**} \sqcap \{b\}^{**} = \{a \wedge b\}^{**}$ and $\{a\}^{**} \sqcup \{b\}^{**} = \{a \vee b\}^{**}$. Then we have

Theorem 3.1. $(\mathcal{B}(L), \Box, \Box)$ is a bounded lattice.

Proof. Obviously, $\{a \wedge b\}^{**}$ is the infimum of $\{a\}^{**}$ and $\{b\}^{**}$ in $(\mathcal{B}(L), \subseteq)$. To prove $\{a \vee b\}^{**}$ is the supremum of $\{a\}^{**}$ and $\{b\}^{**}$ in $(\mathcal{B}(L), \subseteq)$. $\{a \vee b\}^{**}$ is an upper bound of $\{a\}^{**}$ and $\{b\}^{**}$ in $(\mathcal{B}(L), \subseteq)$. Let ${c}^*$ be any other upper bound of ${a}^*$ and ${b}^*$ in $(\mathcal{B}(L), \subseteq)$. Let $t \in {a \lor b}^*$. Then $(t \cap {a \lor b}^* = {0}$. By Result 2.2 (ii) we get $(t] \cap \{a\}^* \cap \{b\}^* = \{0\}$, which implies $(t] \cap \{a\}^* \subseteq \{b\}^{**}$. But as $\{b\}^{**} \subseteq \{c\}^{**}$ we get $(t] \cap \{a\}^* \subseteq \{c\}^{**}$. Thus $(t] \cap \{a\}^* \cap \{c\}^* = \{0\}$, implies $(t] \cap \{c\}^* \subseteq \{a\}^{**}$. Again, as $\{a\}^{**} \subseteq \{c\}^{**}$, we get $(t] \cap \{c\}^* \subseteq \{c\}^{**}$, that is $(t] \cap \{c\}^* = \{0\}$. Therefore $(t] \subseteq \{c\}^{**}$ which yields $t \in \{c\}^{**}$. This shows that ${a \vee b}^{**} \subseteq {c}^{**}$ and hence ${a \vee b}^{**}$ is the supremum of ${a}^{**}$ and ${b}^{**}$ in $(\mathcal{B}(L), \subseteq)$. As ${0}^{**} = {0}$ and $\{1\}^{**} = L$ belong to $\mathcal{B}(L), (\mathcal{B}(L), \sqcap, \sqcup)$ is a bounded lattice.

Corollary 3.1. The lattice $(\mathcal{B}(L), \sqcap, \sqcup)$ is a homomorphic image of the lattice L.

Proof. Define $\theta : L \to \mathcal{B}(L)$ by $\theta(a) = \{a\}^{**}$ for each $a \in L$. Then $\theta(a \wedge b) = \{a \wedge b\}^{**} = \{a\}^{**} \sqcap \{b\}^{**} =$ $\theta(a) \sqcap \theta(b)$ and $\theta(a \vee b) = \{a \vee b\}^{**} = \{a\}^{**} \sqcup \{b\}^{**} = \theta(a) \sqcup \theta(b)$ hold for all $a, b \in L$. Hence θ is a homomorphism. As θ is onto, the result follows.

Remark 3.1. Note that the homomorphism θ is not necessarily one-one. For this consider the 0 -distributive lattice in Example 3.1. Here for $a \neq b$ in L we have $\{a\}^{**} = \{b\}^{**}.$

For any ideal I of L, define $\delta(I) = \{\{a\}^{**} : a \in I\}$ and for any ideal \overline{I} of $\mathcal{B}(L)$, define $\overleftarrow{\delta}(\overline{I}) =$ $\{a \in L : \{a\}^{**} \in \overline{I}\}.$ With these notations we prove

Theorem 3.2.

- (i) $\delta(I)$ is an ideal of $\mathcal{B}(L)$, for any ideal I of L.
- (ii) $\overleftarrow{\delta}(\overline{I})$ is an ideal of L, for any ideal \overline{I} of $\mathcal{B}(L)$.
- (iii) For any two ideals I and J of $L, I \subseteq J \Rightarrow \delta(I) \subseteq \delta(J)$.
- (iv) For any two ideals \overline{I} and \overline{J} of $\mathfrak{B}(L), \overline{I} \subseteq \overline{J} \Rightarrow \overleftarrow{\delta}(\overline{I}) \subseteq \overleftarrow{\delta}(\overline{J}).$

Proof. (i). Let I be any ideal of L. As $0 \in I$, $\{0\}^{**} = \{0\} \in \delta(I)$. Hence $\delta(I)$ is non empty. Let ${a}^* \{b\}^{**} \in \mathcal{B}(L)$ such that ${a}^* \subseteq {b}^*$ and ${b}^* \in \delta(I)$. Then ${b}^* = {x}^*$ for some $x \in I$. Thus ${a}^{**} = {a}^{**} \sqcap {b}^{**} = {a}^{**} \sqcap {x}^{**} = {a \wedge x}^{**}$. As $a \wedge x \in I$, we get ${a}^{**} \in \delta(I)$. Let ${a}^{**}$, ${b}^{**} \in \delta(I)$. Therefore $\{a\}^{**} = \{x\}^{**}$ and $\{b\}^{**} = \{y\}^{**}$ for some $x, y \in I$. Hence $\{a\}^{**} \sqcup \{b\}^{**} = \{x\}^{**} \sqcup \{y\}^{**} =$ $\{x \vee y\}^{**}$. As $x \vee y \in I$, we get $\{x \vee y\}^{**} \in \delta(I)$ Hence $\{a\}^{**} \sqcup \{b\}^{**} \in \delta(I)$. Therefore $\delta(I)$ is an ideal of $\mathcal{B}(L)$.

(ii) Let \overline{I} be any ideal of $\mathcal{B}(L) \cdot \{0\}^{**} = \{0\} \in \overline{I}$ implies $0 \in \overleftarrow{\delta}(\overline{I})$. Hence $\overleftarrow{\delta}(\overline{I})$ is non-empty. Let $a, b \in L$ such that $a \leq b$ and $b \in \overleftarrow{\delta_{\cdot}(I)}$. Then $\{a\}^{**} \subseteq \{b\}^{**}$ and $\{b\}^{**} \in \overline{I}$. \overline{I} being an ideal we get $\{a\}^{**} \in \overline{I}$. But then $a \in \overleftarrow{\delta}(\overline{I})$. Let $a, b \in \overleftarrow{\delta}(\overline{I})$. Then $\{a\}^{**}, \{b\}^{**} \in \overline{I}$ implies $\{a\}^{**} \sqcup \{b\}^{**} = \{a \vee b\}^{**} \in \overline{I}$. Therefore $a \vee$ $b \in \overleftarrow{\delta}(\overline{I})$. This proves $\overleftarrow{\delta}(\overline{I})$ is an ideal of L.

(iii) Let I and J be two ideals of L such that $I \subseteq J$. Let $\{a\}^{**} \in \delta(I)$. Then $\{a\}^{**} = \{x\}^{**}$ for some $x \in I$. But then, since $I \subseteq J$, we get $x \in J$. This in turns gives $\{a\}^{**} \in \delta(J)$. Hence $\delta(I) \subseteq \delta(J)$.

(iv) Let \overline{I} and \overline{J} be any two ideals of $B(L)$ such that $\overline{I} \subseteq \overline{J}$. Let $x \in \overleftarrow{\delta}(\overline{I})$. Then $\{x\}^{**} \in \overline{I}$ implies ${x}^* \in \overline{J}$. Hence $x \in \overleftarrow{\delta}(\overline{J})$ and the result follows. \Box

As $\delta(I)$ is an ideal of $\mathcal{B}(L)$, for any ideal I of L, we have the mapping $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ is well defined, where $\mathcal{I}(\mathcal{B}(L))$ denotes the lattice of all ideals of the lattice $\mathcal{B}(L)$. Further we have

Theorem 3.3. $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ is a $\{0,1\}$ homomorphism.

Proof. Let I and J be any ideals in $\mathcal{I}(L)$. $\delta(I \cap J) \subseteq \delta(I) \cap \delta(J)$ (by Theorem 3.2 - (iii)). Let $\{a\}^{**} \in$ $\delta(I) \cap \delta(J)$. Then $\{a\}^{**} \in \delta(I)$ implies $\{a\}^{**} = \{i\}^{**}$ for some $i \in I$ and $\{a\}^{**} \in \delta(J)$ gives $\{a\}^{**} = \{j\}^{**}$ for some $j \in J$. Thus $\{a\}^{**} = \{i\}^{**} \sqcap \{j\}^{**} = \{i \wedge j\}^{**}$. As $i \wedge j \in I \cap J$, we get $\{a\}^{**} \in \delta(I \cap J)$. This shows that $\delta(I) \cap \delta(J) \subseteq \delta(I \cap J)$. Combining both the inclusions we get $\delta(I \cap J) = \delta(I) \cap \delta(J)$.

Now, again by Theorem 3.2 - (iii), $\delta(I) \vee \delta(J) \subseteq \delta(I \vee J)$. Let $\{a\}^{**} \in \delta(I \vee J)$. Hence $\{a\}^{**} = \{y\}^{**}$ for some $y \in I \vee J$. Therefore $y \leq i \vee j$ for some $i \in I$ and $j \in J$. This yields $\{y\}^{**} \subseteq \{i \vee j\}^{**} = \{i\}^{**} \sqcup \{j\}^{**}$. Therefore ${a}^* = {y}^* \in \delta(I) \vee \delta(J)$. Hence $\delta(I \vee J) \subseteq \delta(I) \vee \delta(J)$. Combining both the inclusions we get $\delta(I \vee J) = \delta(I) \vee \delta(J).$

This proves that $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ is a homomorphism. Again $\delta((0)) = \{\{0\}^{**}\} = \{\{0\}\}\$ and $\delta((1)) =$ $\{\{1\}^{**}\} = \{L\}$, shows δ is a $\{0, 1\}$ homomorphism.

By Theorem 3.2, we get two mappings $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ and $\overleftarrow{\delta} : \mathcal{I}(\mathcal{B}(L)) \to \mathcal{I}(L)$. Hence $\delta \circ \overleftarrow{\delta}$: $\mathcal{I}(\mathcal{B}(L)) \to \mathcal{I}(\mathcal{B}(L))$ and $\delta \circ \delta : \mathcal{I}(L) \to \mathcal{I}(L)$. About these two mappings we have

Theorem 3.4.

- (i) $\delta \circ \overleftarrow{\delta}$ is an identity mapping on $\mathcal{I}(\mathcal{B}(L)).$
- (ii) $\delta \circ \delta$ is a closure operator on $\mathcal{I}(L)$.

Proof. (i) Let \overline{I} be any ideal of $\mathcal{B}(L)$. Let $\{x\}^{**} \in \delta \circ \overleftarrow{\delta}(\overline{I}) = \delta(\overleftarrow{\delta}(\overline{I}))$. Hence $\{x\}^{**} = \{y\}^{**}$ for some $y \in \overleftarrow{\delta}(\overline{I}).$ But then $\{y\}^{**} \in \overline{I}$, which implies $\{x\}^{**} \in \overline{I}$. This gives $\delta \circ \overleftarrow{\delta}(\overline{I}) \subseteq \overline{I}$. Conversely, let $\{x\}^{**} \in \overline{I}$. Then $x \in \overleftarrow{\delta}(\overline{I})$ and consequently $\{x\}^{**} \in \delta(\overleftarrow{\delta}(\overline{I}))$ (since $\overleftarrow{\delta}(\overline{I})$ is an ideal of L). Hence $\overline{I} \subseteq \delta \circ \overleftarrow{\delta}(\overline{I})$. From both the inclusions we get $\delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$. Hence $\delta \circ \overleftarrow{\delta}$ is an identity mapping on $\mathcal{I}(\mathcal{B}(L))$.

(ii) Let $I \in \mathcal{I}(L)$ and $x \in I$. Then $\{x\}^{**} \in \delta(I)$ and by Theorem 3.2 - (i), $\delta(I)$ is an ideal of $\mathcal{B}(L)$, which yields $x \in \overleftarrow{\delta} \circ \delta(I)$. Hence $I \subseteq$ $\overleftarrow{\delta} \circ \delta(I).$ (3.1)

Let $\underline{I}, J \in \mathcal{I}(L)$ and $I \subseteq J$. As δ and $\overleftarrow{\delta}$ are isotone mappings (by Theorem 3.2), we get $\overleftarrow{\delta} \circ \delta(I) \subseteq$ $\overleftarrow{\delta} \circ \delta(J).$ (3.2)

Finally, let $I \in \mathcal{I}(L)$. As $I \subseteq \overleftarrow{\delta} \circ \delta(I)$, applying (3.2) we get $\overleftarrow{\delta} \circ \delta(I) \subseteq \overleftarrow{\delta} \circ \delta\left(\overleftarrow{\delta} \circ \delta(I)\right)$. Conversely, let $x \in \overleftarrow{\delta} \circ \delta(\overline{I})$ Then $\{x\}^{**} \in \delta(\overleftarrow{\delta} \circ \delta(I))$ implies $\{x\}^{**} = \{y\}^{**}$ for some $y \in \overleftarrow{\delta} \circ \delta(I)$. But then $\{y\}^{**} \in \delta(I)$, which implies $\{x\}^{**} \in \delta(I)$. This gives $x \in \overleftarrow{\delta} \circ \delta(I)$. This proves $\overleftarrow{\delta} \circ \delta\left(\overleftarrow{\delta} \circ \delta(I)\right) \subseteq \overleftarrow{\delta} \circ \delta(I)$. Combining both the inclusions we get $\overleftarrow{\delta} \circ \delta \left(\overleftarrow{\delta} \circ \delta(I) \right) = \overleftarrow{\delta} \circ \delta(I).$ (3.3)

From (3.1), (3.2) and (3.3) we get $\overline{\delta} \circ \delta$ is a closure operator on $\mathcal{I}(L)$. \Box

Remark 3.2. The mapping $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ is a homomorphism follows from Theorem 3.3. Let \overline{I} be any ideal of $\mathcal{B}(L)$. As $\overleftarrow{\delta}(\overline{I})$ is an ideal of L and $\delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$, we get the mapping $\delta : \mathcal{I}(L) \to \mathcal{I}(\mathcal{B}(L))$ is onto. Hence the lattice $\mathcal{I}(\mathcal{B}(L))$ is a homomorphic image of the lattice $\mathcal{I}(L)$.

4 α - ideals

In this section we show that the ideals in L which are closed with respect to the closure operator $\overleftarrow{\delta} \circ \delta$ defined on $\mathcal{I}(L)$ are α -ideals in L and conversely. Let $\mathcal{C}(L)$ denote the set of all ideals in L which are closed with respect to the closure operator $\overleftarrow{\delta} \circ \delta$ defined on $\mathcal{I}(L)$. Thus $\mathcal{C}(L) = \Big\{ I \in \mathcal{I}(L) : \overleftarrow{\delta} \circ \delta(I) = I \Big\}$. Obviously, (0) and (1) belong to $\mathcal{C}(L)$. Hence $\mathcal{C}(L)$ is a non-empty subset of $\mathcal{I}(L)$ but not necessarily a sublattice of the lattice $\mathcal{I}(L)$. This follows by the 0-distributive lattice given in Example 3.1. Here $\mathcal{C}(L) = \{(0), (b), (c)\}\$ and $(b) \vee (c) = (d)$. As $(d) \notin C(L)$, the subset $C(L)$ is not a sublattice of the lattice $\mathcal{I}(L)$. Though $C(L)$ does not form a sublattice of the lattice $\mathcal{I}(L)$, it forms a lattice on its own. This we prove in the following theorem.

Theorem 4.1. $(C(L), \overline{\wedge}, \vee)$ is a bounded lattice where $\overline{\wedge}$ and \vee are defined by $I \overline{\wedge} J = I \cap J$ and $I \vee J = \overline{\wedge} \circ \delta(I \vee J)$ for $I, J \in \mathcal{C}(L)$

Proof. (i) First we prove that for $I, J \in \mathcal{C}(L), I \cap J \in \mathcal{C}(L)$. As $\overleftarrow{\delta}$ and δ are isotone mappings, we get $\overleftarrow{\delta} \circ \delta$ is also isotone. Hence $\overleftarrow{\delta} \circ \delta(I \cap J) \subseteq \overleftarrow{\delta} \circ \delta(I) \cap \overleftarrow{\delta} \circ \delta(J)$.

Let $x \in \overline{\delta} \circ \delta(I) \cap \overline{\delta} \circ \delta(J)$. Then $\{x\}^{**} \in \delta(I) \cap \delta(J) = \delta(I \cap J)$. This gives $x \in \overline{\delta} \circ \delta(I \cap J)$. Hence $\overline{\delta} \circ \delta(I) \cap \overline{\delta} \circ \delta(J) \subseteq \overline{\delta} \circ \delta(I \cap J)$. Combining both the inclusions we get $\overline{\delta} \circ \delta(I \cap J) = \overline{\delta} \$ (since $I, J \in \mathcal{C}(L)$). This proves $I \cap J \in \mathcal{C}(L)$. Thus the infimum of $I, J \in \mathcal{C}(L)$ is $I \cap J$. Hence $I \overline{\wedge} J = I \cap J$.

(ii) First note that, by Theorem 3.4 - (ii), $\overleftarrow{\delta} \circ \delta(I) \in \mathcal{C}(L)$, for any ideal I of L. Let $I, J \in \mathcal{C}(L)$. Then $I = \overleftarrow{\delta} \circ \delta(I) \subseteq \overleftarrow{\delta} \circ \delta(I \vee J)$ and $J = \overleftarrow{\delta} \circ \delta(J) \subseteq \overleftarrow{\delta} \circ \delta(I \vee J)$ (since $\overleftarrow{\delta} \circ \delta$ is isotone). Thus $\overleftarrow{\delta} \circ \delta(I \vee J)$ is an upper bound of I and J in $\mathcal{C}(L)$. Let $K \in \mathcal{C}(L)$, such that $I \subseteq K$ and $J \subseteq K$. Then $I \vee J \subseteq K$ implies $\overleftarrow{\delta} \circ \delta(I \vee J) \subseteq \overleftarrow{\delta} \circ \delta(\underline{K}) = K$ (since $K \in \mathcal{C}(L)$). This shows that $\overleftarrow{\delta} \circ \delta(I \vee J)$ is the supremum of I and J in $\mathcal{C}(L)$ i. e. $I \vee I = \overleftarrow{\delta} \circ \delta(I \vee J)$. As $(0] \in \mathcal{C}(L)$ and $L \in \mathcal{C}(L)$, $(\mathcal{C}(L), \overline{\wedge}, \vee)$ is a bounded lattice.

We know that the lattice $\mathcal{I}(\mathcal{B}(L))$ is a homomorphic image of the lattice $\mathcal{I}(L)$ (see Remark 3.2). But interestingly we have

Theorem 4.2. The lattice $\mathcal{C}(L)$ is isomorphic with the lattice $\mathcal{I}(\mathcal{B}(L))$.

Proof. Define the mapping $\psi : C(L) \to \mathcal{I}(B(L))$ by $\psi(I) = \delta(I)$ for each $I \in C(L)$, which is clearly a well defined mapping.

(i) Let $\psi(I) = \psi(J)$ for $I, J \in \mathcal{C}(L)$. Then we have $\delta(I) = \delta(J)$. Therefore $\overleftarrow{\delta} \circ \delta(I) = \overleftarrow{\delta} \circ \delta(J)$ which implies $I = J$ (since $I, J \in \mathcal{C}(L)$). This shows that ψ is one-one.

(ii) Let \overline{I} be any ideal of $\underline{\mathcal{B}}(L)$. Then $\overleftarrow{\delta}(I)$ is an ideal of L (by Theorem 3.2 - (ii)) and $\delta \circ \overleftarrow{\delta}(I) = \overline{I}$ (by Theorem 3.4 - (i)). Then $\delta \circ \delta(\overline{\delta}(\overline{I})) = \delta(\delta(\overline{\delta}(\overline{I}))) = \delta(\delta \circ \overline{\delta}(\overline{I})) = \delta(\overline{I}).$ This shows that $\delta(\overline{I}) \in \mathcal{C}(L)$. As $\psi(\overline{\delta}(\overline{I})) = \delta(\overline{\delta}(\overline{I})) = \delta \circ \overline{\delta}(\overline{I}) = \overline{I}$, we get ψ is onto.

(iii) Let $I, J \in \mathcal{C}(L)$. Then by definition of ψ and by Theorem 3.3 we get, $\psi(I \bar{\wedge} J) = \psi(I \cap J) = \delta(I \cap J)$ $= \delta(I) \cap \delta(J) = \psi(I) \cap \psi(J)$. And by definition of \vee in $\mathcal{C}(L)$ we get $\psi(I \vee J) = \delta(I \vee J) = \delta\left(\overleftarrow{\delta} \circ \delta(I \vee J)\right)$ $= \delta(I \vee J)$ (since $\delta \circ \overline{\delta}$ is an identity map). Thus $\psi(I \vee J) = \delta(I \vee J) = \delta(I) \vee \delta(J) = \psi(I) \vee \psi(J)$. This proves that ψ is a homomorphism. From (i) - (iii) we get ψ is an isomorphism.

Following theorem gives a necessary and sufficient conditions for an ideal I of L to be a member of $\mathcal{C}(L)$.

Theorem 4.3. For any ideal I of L, following statements are equivalent.

 (i) $I \in \mathcal{C}(L)$. (*ii*) For $x, y \in L, \{x\}^{**} = \{y\}^{**}, x \in I \Rightarrow y \in I$. (*iii*) For $x, y \in L, \{x\}^* = \{y\}^*$ $x \in I \Rightarrow y \in I$. (iv) $I = \bigcup \{ \{x\}^{**} : x \in I \}.$ (v) For $x, y \in L$, $h(x) = h(y)$, $x \in I \Rightarrow y \in I$, where $h(x) = \{M : M$ is a minimal prime ideal containing x $\}.$ (vi) I is an α -ideal.

Proof. The equivalence of the statements (iii) to (vi) follows by Result 2.3.

(ii) \Leftrightarrow (iii): As $\{x\}^{**} = \{y\}^{**} \Leftrightarrow \{x\}^* = \{y\}^*$ for any $x, y \in L$, the equivalence follows.

(i) \Rightarrow (ii): Let $I \in \mathcal{C}(L)$. Let $x, y \in L$ such that $\{x\}^{**} = \{y\}^{**}$ and $x \in I$. As $x \in I$, we have $\{x\}^{**} \in \delta(I)$. But then, by assumption, we get $\{y\}^{**} \in \delta(I)$. This gives $y \in \overleftarrow{\delta} \circ \delta(I)$. Again by assumption that $I \in \mathcal{C}(L)$, we get $y \in I$. Thus the implication follows.

(ii) \Rightarrow (i): Let $I \in \mathcal{I}(L)$ satisfying condition in (ii). By Theorem 3.4, we have $I \subseteq \overleftarrow{\delta} \circ \delta(I)$. To prove (ii) ⇒ (i): Let $I \in \mathcal{I}(L)$ satisfying condition in (ii). By Theorem 3.4, we have $I \subseteq \overleftarrow{\delta} \circ \delta(I)$. To prove $\delta \circ \delta(I) \subseteq I$. On contrary assume that $\overleftarrow{\delta} \circ \delta(I) \nsubseteq I$. Then there exists $x \in \overleftarrow{\delta} \circ \delta(I)$ such that ${x}^* \in \delta(I)$ which implies ${x}^* = {y}^*$ for some $y \in I$. But then, by assumption, $x \in I$; a contradiction. Hence $\overleftarrow{\delta} \circ \delta(I) \subseteq I$. Combining both the inclusions, we get $\overleftarrow{\delta} \circ \delta(I) = I$. Hence $I \in \mathcal{C}(L)$ and the implication follows. Hence all the statements are equivalent.

Using the property that $I \in \mathcal{C}(L)$ if and only if I is an α -ideal, proved in above theorem, we get

Corollary 4.1. (a] $\in \mathcal{C}(L)$ if and only if $(a) = \{a\}^{**}$ for any $a \in L$.

Proof. Let $(a) \in \mathcal{C}(L)$. Then by Theorem 4.3, (a) is an α -ideal of L. This gives $\{a\}^{**} \subseteq (a)$ (by definition of α -ideal). As we obviously have $(a) \subseteq \{a\}^{**}$, the proof of if part follows. Conversely, suppose $(a) = \{a\}^{**}$. We know that every annihilator ideal is an α -ideal, therefore $\{a\}^{**} = (a)$ is an α -ideal. Thus again by Theorem 4.3, we get $(a] \in \mathcal{C}(L)$. \Box

 $I^* \in \mathcal{C}(L)$ for any ideal I in L, because I^* is an α -ideal of L (see Result 2.5). Hence we have

Corollary 4.2. The lattice $(C(L), \overline{\wedge}, \underline{\vee})$ is a pseudo complemented lattice.

Define $A_0(L) = \{\{x\}^*: x \in L\}$. Then $(A_0(L), \hat{\wedge}, \hat{\vee})$ is a lattice, where $\{x\}^* \hat{\wedge} \{y\}^* = \{x \vee y\}^*$ and $\hat{\wedge} \hat{\wedge} \hat{\$ ${x}^* \forall {y}^* = {x \wedge y}^*$. This lattice is called as a lattice of all annulets of L. For any ideal I in L, the set $\{\{x\}^*: x \in I\}$ is a filter in $A_0(L)$ and for any filter F in $A_0(L)$, the set $\{x \in L : \{x\}^* \in F\}$ is an ideal of L. Let $\mathcal{F}(A_0(L))$ denote the lattice of all filters in $A_0(L)$. Then the maps $\alpha : \mathcal{I}(L) \to \mathcal{F}(A_0(L))$ defined by $\alpha(I) = \{\{x\}^* : x \in I\}$ and $\beta : \mathcal{F}(A_0(L)) \to \mathcal{I}(L)$ defined by $\beta(F) = \{x \in L : \{x\}^* \in F\}$ are well defined isotone maps.

We need the following results from [8]:

Lemma 4.1. ([8], Theorem 9). The map $\beta \circ \alpha : \mathcal{I}(L) \to \mathcal{I}(L)$ is a closure operator on $\mathcal{I}(L)$.

Lemma 4.2. ([8] Theorem 10).

For any ideal I in L, following statements are equivalent.

(i) I is an α -ideal.

(ii) $\beta \circ \alpha(I) = I$.

Using above two lemmas and Theorem 4.3 we get

 $\mathcal{C}(L) = \Big\{I \in \mathcal{I}(L) : \overleftarrow{\delta} \circ \delta(I) = I\Big\} = \{I \in \mathcal{I}(L) : \beta \circ \alpha(I) = I\}.$ Hence an ideal I in L is closed with respect to the closure operator $\overleftarrow{\delta} \circ \delta$ if and only if it is closed with respect to the closure operator $\beta \circ \alpha$ defined on $\mathcal{I}(L)$. Thus we have

Corollary 4.3. For any ideal I of $L, \overleftarrow{\delta} \circ \delta(I) = I$ if and only if $\beta \circ \alpha(I) = I$.

Let I be an ideal of L. If there exists a prime ideal P of L such that $I \subseteq P$ and P is minimal in the class of all prime ideals containing I , then P is called a prime ideal belonging to I . We know that any prime ideal of L need not be an α -ideal. For this consider the lattice $L = \{0, a, b, c, d, e, 1\}$ whose Hasse diagram is as in Figure 3.1. The ideal (e) is a prime ideal but not an α -ideal. For, $d \in (e]$ but $(d]^{**} = L \nsubseteq (e]$.

In the following theorem we show that a prime ideal belonging to an α -ideal is an α -ideal.

Theorem 4.4. Let I be an α -ideal of L. Let P be a prime ideal belonging to I, then P is an α ideal.

Proof. Suppose P is not an α -ideal. Hence there exist x, y in L such that $\{x\}^{**} = \{y\}^{**}, x \in P$ but $y \notin P$ (see Theorem 4.3). Consider the filter $F = (L \setminus P) \vee [x \wedge y]$. Claim that $F \cap I = \emptyset$. Let $F \cap I \neq \emptyset$. Select $a \in F \cap I$. Then $a \in F$ implies $a \geq r \wedge s$ for some $r \in (L\backslash P)$ and $s \geq x \wedge y$. But then $a \geq r \wedge x \wedge y$ and therefore $r \wedge x \wedge y \in I$ (as $a \in I$). Since $\{x\}^{**} = \{y\}^{**}$, using the Result 2.2, we get $\{r \wedge x\}^{**} = \{r \wedge y\}^{**}$ and hence $\{r \wedge x \wedge y\}^{**} = \{r \wedge y\}^{**}$. Since $r \wedge x \wedge y \in I$ and I is an α -ideal, by Theorem 4.3, we get $r \wedge y \in I$. Hence $r \wedge y \in P$ (since $I \subseteq P$). Now $r \wedge y \in P$, P is a prime ideal and $r \notin P$ imply $y \in P$; which contradicts our assumption. Hence we must have $F \cap I = \emptyset$. Therefore, by Result 2.4, there exists a prime ideal Q containing I and disjoint with F. Thus $Q \subseteq P$. Moreover $F \cap Q = \emptyset$ and $x \wedge y \in F$ implies $x \wedge y \notin Q$. Hence $Q \neq P$ (since $x \in P \Rightarrow x \wedge y \in P$) i. e. $Q \subset P$. But this contradicts to the fact that P is minimal in the class of all prime ideals containing I. Hence we must have P is an α -ideal. class of all prime ideals containing I. Hence we must have P is an α -ideal.

Making an appeal to Theorem 4.1, Theorem 4.3 and Result 2.6, we establish

Corollary 4.4. Let L and L' be bounded 0- distributive lattices and let $f: L \to L'$ be an annihilator preserving onto homomorphism. Then we have

- (i) If $I \in \mathcal{C}(L)$, then $f(I) \in \mathcal{C}(L')$.
- (*ii*) If $I' \in \mathcal{C}(L')$, then $f^{-1}(I') \in \mathcal{C}(L)$.

5 Conclusion

The present investigation provides a new way to define closure operator on the lattice of all ideals of a bounded 0 - distributive lattice. Moreover the ideals closed with respect to this closure operator are α ideals. Therefore this work will motivate and useful to study more properties of α - ideals.

References

- [1] S. Büyükkütük, I. Kişi, V.N. Mishra, G. Oztürk, Some Characterizations of Curves in Galilean 3-Space \mathbb{G}_3 , Facta Universitatis (NIŠ) Ser. Math. Inform., 31 (2) (2016), 503 – 512.
- [2] Deepmala and L.N. Mishra, Differential operators over modules and rings as a path to the generalized differential geometry, Facta Universitatis (NIS) Ser. Math. Inform., 30 (5) (2015), 753 – 764.
- [3] G. Grätzer, Lattice Theory First concepts and distributive lattices, Freeman and Company, San Francisco, 1971.
- [4] A. Hasseb and K. Khatri, Some more results on f-Kenmotsu 3-manifolds, Advanced Studies in Contemporary Mathematics, 31(4) (2021), 433 – 444. DOI: http://dx.doi.org/10.17777/ascm 2021.31.4.433, ISNN : 2508-7908. URL: https://jangjeonopen.or.kr/public/upload/1635611592-ascm, 31-4-5.pdf.
- [5] C. Jayaram, 1 modular lattices, Rev. Roum. Pure Appliques, **29**(1984), 163 169.
- [6] C. Jayaram, Prime $\alpha-$ ideals in a 0-distributive lattice, Indian J. pure and appl. Math., 17 (3) (1986), $331 - 337.$
- [7] I. Kişi, S. Büyükkütük, Deepmala and G. Oztürk, AW(k)-type Curves According to Parallel Transport Frame in Euclidean space \mathbb{E}^4 , Facta Universitatis (NIS) Ser. Math. Inform., 31 (4) (2016), 885 – 905.
- [8] Y. S. Pawar and D. N. Mane, α -ideals in a 0-distributive semilattices and 0-distributive lattices, *Indian* J. Pure Appl., Math., 24(1993), 435 – 443.
- [9] Y. S. Pawar and S. S. Khopade, α-ideals and annihilator ideals in 0-distributive lattices, Acta Univ. Palacki Olomuc., Fac. Rer. Nat. Math., 49(2010), 63 – 74.
- [10] Laurian-Ioan Pișcoran and V. N. Mishra, Projectively flatness of a new class of(α , β)-metrics, Georgian Math. Journal, 26 (1) (2019), 133 – 139. DOI: 10.1515/gmj-2017-0034.
- [11] Pulak Sabhapandit, Kuljit Pathak and Manoj Kumar Sarma, On Closed Filters in CI-Algebras, $J\tilde{n}\bar{a}n\bar{a}bha$, **52**(2) (2022), 224 – 227.
- [12] R. Subbarayan, Equational Class-Like Properties Of 0-Distributive Lattices, $J\tilde{n}\bar{a}n\bar{a}bha$, $52(2)$ (2022), $73 - 76.$
- [13] Vandana, Deepmala, K. Drachal and V. N. Mishra, Some algebro-geometric aspects of spacetime cboundary, *Mathematica Aeterna*, **6** (4) (2016), 561 – 572.
- [14] J. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Liege., 37(1968), 149 – 158.