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Abstract

A closure operator on the lattice of all ideals of a bounded O-distributive lattice is introduced. It
is observed that the ideals which are closed with respect to this closure operator are a-ideals in it and
conversely.
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1 Introduction

As a generalization of the concept of distributive lattices on one hand and pseudocomplemented lattices on
the other, 0- distributive lattices are introduced by Varlet [14]. Jayaram [6] defined and studied a-ideals in
0- distributive lattices. Additional properties of a-ideals in a 0-distributive lattice are obtained by Pawar
et al. [8,9]. Separation theorem for a-ideals in a 0-distributive lattice is proved in [5]. In [8], the authors
have obtained a characterisation of an a-ideal using a closure operator on the lattice of all ideals of a 0-
distributive lattice. The notion of closed filter in Cl-algebra with some characteristic properties, is studied
by Sabhapandit et al. [11]. Subbarayan [12] has made contributions in different aspects of 0-distributive
lattices. In this paper we introduce a new closure operator on the lattice of all ideals of a 0O-distributive
lattice and characterise a-ideals in terms of the ideals which are closed with respect to this closure operator.
Further it is observed that in a given 0- distributive lattice the ideals which are closed under this closure
operator are the a-ideals in it and conversely.

2 Preliminaries

Following are some basic concepts and results needed in the sequel from references. For other non-explicitly
stated elementary notions please refer to [3]. A lattice L with 0 is said to be 0 -distributive if a Ab = 0
and a Ac = 0 imply a A (bV ¢) =0 for any a,b,c in L. Throughout this paper L will denote a bounded
O-distributive lattice unless otherwise specified. For a lattice L, Z(L) denotes the set of all ideals of L. Then
(Z(L), A, V) is a lattice where IAJ =1INJ and IV J = (I UJ], for any two ideals I and J of L. For any
non-empty subset A of L, define A* = {z € L : 2 Aa =0, for each a € A}. By A** we mean (4*)". Note
that when A = {a} then A* = (a]* and also denoted by (a)*. An ideal I in L is called an annihilator ideal if
I = A*, for a non-empty subset A of L. Let L and L’ denote bounded 0-distributive lattices and f : L — L’
be a homomorphism. f is called an annihilator preserving homomorphism if f (A*) = {f(A)}* for any
non-empty subset A of L. An ideal I of L is called an a-ideal if {x}** C I for each € I. Closure operator
on L is a mapping f : L — L satisfying the following conditions: (i) z < f(z), (ii) z <y = f(x) < f(y) and
(i) F(f(2) = f(2).

Result 2.1. (Varlet [14]). A lattice L with 0 is 0 - distributive if and only if A* is an ideal for any non-empty
subset A of L.

Following result can be proved easily.

Result 2.2. In a 0-distributive lattice L, for all a,b,c € L we have
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(i) {a}™ 0 {b} = {a A b},
(ii) {a}* N {b}* = {aV b}*.
(iii) {a}*™ ={b}* = {a Ac}™ = {bAc}*™.

Result 2.3. (Pawar and Mane [8]). In a bounded 0-distributive lattice L following statements are equivalent.
(i) For x,y € L {z}* ={y},zel=>yel.
(it) I =U{{z}* 2z €I}.
(iti) For x,y € L, h(z) = h(y),x € I = y € I, where h(x) = {M : M 1is a minimal prime ideal containing
(iv) I is an a-ideal.

Result 2.4. (Jayaram [5]). Let L be a 0-distributive lattice. Let I be an a-ideal and S be a meet sub semi
lattice of L such that INS = (). Then there exists a prime a-ideal P in L containing I and disjoint with S.

Result 2.5. (Pawar and Mane [8]). Every annihilator ideal in a 0-distributive lattice L is an a-ideal.

Result 2.6. (Pawar and Khopade [9]). Let L and L’ be any two bounded 0-distributive lattices and let
f: L — L' be an annihilator preserving onto homomorphism, Then

(i) If I is an a-ideal of L, then f(I) is an a-ideal of L'.

(ii) If I' is an a-ideal of L', then f~1(I') is an a-ideal of L.

3 Closure operator
In this section we introduce a closure operator on Z(L).

Define B(L) = {{a}** : a € L}. L being 0-distributive lattice, B(L) C Z(L) (by Result 2.1) but B(L) is
not necessarily a sub lattice of the lattice Z(L). Fot this consider the following example.

e
d
b
C
a
0
Figure 3.1

Example 3.1. Consider the bounded 0 - distributive lattice L = {0, a, b, ¢, d, e, 1} as shown by the Hasse
Diagramme in Figure 3.1. Here {a}** = {0,a,b} and {c}** = {0, c}. Hence {a}** vV {c}** = {0,a,b,¢,d} ¢
B(L). Hence the set B(L) is a poset under set inclusion but need not be a sub lattice of the lattice Z(L).

For {a}**,{b}** € B(L). Define {a}** M {b}** = {a Ab}*™* and {a}** U {b}** = {a V b}**. Then we have
Theorem 3.1. (B(L),M,U) is a bounded lattice.

Proof. Obviously, {a A b}** is the infimum of {a}** and {b}** in (B(L),C). To prove {a V b}** is the
supremum of {a}** and {b}** in (B(L), C).{a vV b}** is an upper bound of {a}** and {b}** in (B(L),C). Let
{c}** be any other upper bound of {a}** and {b}** in (B(L), Q). Let t € {aVb}**. Then (t|N{aVvb}* = {0}.
By Result 2.2 (ii) we get (¢] N [{a}* N {b}*] = {0}, which implies (¢] N {a}* C {b}**. But as {b}** C {c}**
we get (t] N {a}* C {c}**. Thus (¢]N{a}* N{c}* = {0}, implies (¢JN {c}* C {a}**. Again, as {a}** C {c}**,
we get (t] N {c}* C {c}*™, that is (¢] N {c}* = {0}. Therefore (¢] C {c}** which yields t € {c}**. This shows
that {aVb}*™ C {c}** and hence {aVb}** is the supremum of {a}** and {b}** in (B(L),C). As {0}** = {0}
and {1}** = L belong to B(L), (B(L),N,U) is a bounded lattice. O

Corollary 3.1. The lattice (B(L),M,U) is a homomorphic image of the lattice L.
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Proof. Define 6 : L — B(L) by 6(a) = {a}** for each a € L. Then 0(a Ab) = {a Ab}*™ = {a}™* M1 {b}** =
O(a) M O(b) and O(a vV b) = {a Vv b}*™ = {a}** U {b}** = O(a) U (D) hold for all a,b € L. Hence 0 is a
homomorphism. As 6 is onto, the result follows. O

Remark 3.1. Note that the homomorphism 0 is not necessarily one-one. For this consider the 0 - distributive
lattice in Example 3.1. Here for a # b in L we have {a}** = {b}**.

For any ideal I of L, define §(I) = {{a}**:a €I} and for any ideal T of B(L), define <3(7) =
{a € L:{a}** € I}. With these notations we prove

Theorem 3.2.

(i) 6(I) is an ideal of B(L), for any ideal I of L.

(i1) %(f) is an ideal of L, for any ideal I of B(L).

(#ii) For any two ideals I and J of L,I C J = 6(I) C4(J).

(iv) For any two ideals I and J of B(L),I1 C J = <g(l_) - <g(j)
Proof. (i). Let I be any ideal of L. As 0 € I,{0}** = {0} € §(). Hence §(I) is non empty. Let
{a}**, {b}** € B(L) such that {a}** C {b}** and {b}** € §(I). Then {b}** = {z}** for some x € I. Thus
{a}** = {a}™{b}** = {a}*N{a}** = {anz}*™. Asarz €I, we get {a}** € §(I). Let {a}*, {b}** € o6(I).
Therefore {a}** = {z}** and {b}** = {y}** for some z,y € I. Hence {a}*™ U {b}** = {z}* U {y}*™ =
{zVy}*. AsazVvyel, weget {zVy}*™ € () Hence {a}*™* U {b}** € §(I). Therefore 6(I) is an ideal of
B(L).

(ii) Let I be any ideal of B(L)-{0}** = {0} € I implies 0 € <g(f) Hence <g(f) is non-empty. Let a,b € L
such that a < b and b € <E(If) Then {a}** C {b}** and {b}** € I. I being an ideal we get {a}** € I. But
then a € <E(I_) Let a,b € <g(f) Then {a}**, {b}** € I implies {a}** U {b}** = {a V b}** € I. Therefore aV
b€ 6 (I). This proves § (I) is an ideal of L.

(iii) Let I and J be two ideals of L such that I C J. Let {a}** € §(I). Then {a}** = {«}** for some
x € I. But then, since I C J, we get « € J. This in turns gives {a}** € §(J). Hence §(I) C §(J).

_ _ _ - T _
(iv) Let I and J b(e_any two ideals of B(L) such that I C J. Let z € 6 (I). Then {x}** € I implies
{xz}** € J. Hence z € 6 (J) and the result follows. O

As 6(I) is an ideal of B(L), for any ideal I of L, we have the mapping ¢ : Z(L) — Z(B(L)) is well defined,
where Z(B(L)) denotes the lattice of all ideals of the lattice B(L). Further we have

Theorem 3.3. ¢ : Z(L) — Z(B(L)) is a {0,1} homomorphism.

Proof. Let I and J be any ideals in Z(L). §(INJ) C §(I) Né(J) (by Theorem 3.2 - (iii)). Let {a}** €
5(I)Né(J). Then {a}** € 6(I) implies {a}** = {i}** for some ¢ € I and {a}** € §(J) gives {a}** = {j}**
for some j € J. Thus {a}*™ = {i}* N {j}*™* = {iAnj}*™ AsinjelInJ, weget {a}** € §(INJ). This
shows that 6(I) N d(J) C §(I N J). Combining both the inclusions we get 6(I NJ) = §(I) N(J).

Now, again by Theorem 3.2 - (iii), 6(I)Vd(J) C d (I V J). Let {a}** € 6(IV J). Hence {a}** = {y}** for
some y € IV J. Therefore y < iV j for some ¢ € I and j € J. This yields {y}** C {i v j}** = {i}** U {j}**
Therefore {a}** = {y}** € §(I) V4(J). Hence §(I v J) C §(I) Vv 6(J). Combining both the inclusions we get
STV JI)=6T)V ).

This proves that § : Z(L) — Z(B(L)) is a homomorphism. Again §((0]) = {{0}**} = {{0}} and §((1])
{{1}**} = {L}, shows § is a {0, 1} homomorphism.

o

By Theorem 3.2, we get two mappings 6 : Z(L) — Z(B(L)) and 5 - Z(B(L)) — Z(L). Hence 6 o K
Z(B(L)) = Z(B(L)) and § od:Z(L) — Z(L). About these two mappings we have

Theorem 3.4.
(i) 60 0 is an identity mapping on Z(B(L)).
(ii) 0 od is a closure operator on Z(L).
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Proof. (i) Let I be any ideal of B(L). Let {x}** € 6 o %(f) = 6(?(]7)) Hence {z}** = {y}** for some
ye d (f)Eu_t then {y}** € I, which impliei_{x_}** el ’Illis_gives do <E(f) cI Conver_sely7 leL{%}** el
Then z € 6 (1) and consequen(tly ;{x}**ﬁe o(6 (1)) (ﬁnce d (I) is an ideal of L ). Hence I C o § (I). From
both the inclusions we get 6 o 6 (I) = I. Hence é o ¢ is an identity mapping on Z(B(L)).

(ii) Let I € Z(L) and « € I. Then {z}** € §(I) and by Theorem 3.2 - (i), §(I) is an ideal of B(L), which

yields x € § od(I). Hence I C 6 oé([).(_ (3.1)
Let (& J e I(L)ﬁnd ICJ. Asdand ¢ are isotone mappings (by Theorem 3.2),

we get 0 0d(I) C & od(J). (3.2)
) — _ — ==

Finally, let I € Z(L). As I C § od(I), applying (3.2) we get d od(I) C § od ( ] 05(1)). Conversely, let

v e 9o (? o 5([)). Then {z}** €6 (% 0(5(1)) implies {z}** = {y}** for some y € %o d(I). But then

{y}** € 6(I), which implies {z}** € §(I). This gives = € %o §(I). This proves % o6 (%05(1)) - <50(5(1).
Combining both the inclusions we get % o6 (% o 6(])) = <30(5(1). (3.3)
From (3.1), (3.2) and (3.3) we get % 06 is a closure operator on Z(L). O

Remark 3.2. The mapping § : Z(L) — Z(B(L)) is a homomorphism follows from Theorem 3.3. Let I be
any ideal of B(L). As 0 (I) is an ideal of L and 6 o 6 (I) = I, we get the mapping § : Z(L) — Z(B(L)) is
onto. Hence the lattice Z(B(L)) is a homomorphic image of the lattice Z(L).

4 « - ideals
e
In this section we show that the ideals in L which are closed with respect to the closure operator § od defined
on Z(L) are a-ideals in L and conversely. Let C(L) denote the set of all ideals in L which are closed with
— ~

respect to the closure operator 0 od defined on Z(L). Thus C(L) = {I €I(L): § od(I) = I}. Obviously,
(0] and (1] belong to C(L). Hence C(L) is a non-empty subset of Z(L) but not necessarily a sublattice of the
lattice Z ( L). This follows by the O-distributive lattice given in Example 3.1. Here C(L) = {(0], (], (¢]} and

(] V (¢] = (d]. As (d] ¢ C(L), the subset C(L) is not a sublattice of the lattice Z(L). Though C(L) does not
form a sublattice of the lattice Z(L), it forms a lattice on its own. This we prove in the following theorem.

zheorem 4.1. (C(L),A,Y) is a bounded lattice where A and ¥ are defined by INJ =INJ and I Y J =
6 od(IVJ) forI,JeC(L)

Proof. (i) First we proye that for I,J <€_C(L), Iﬂie C(L). As ? and J are isotone mappings, we get % 00
is also isotorﬁ. Hence 6(_0 0(INJ)C 6 od(I)N & od(J). -
- Let x& ) oé([)(_ﬂ § 0d(J). Then {z}* € (I)N(J)=6(IN J)<._This gives 9(6_6 0 o (5<(_Iﬂ J). Hence
4 08(I)N G 0d(J) C & o6(INJ). Combining both the inclusions we get § od(INJ) = § od(I)N § od(J) = INJ
(since I, J € C(L) ). This proves INJ € C(L). Thus the infimum of I, J € C(L) is INJ. Hence IANJ =1NJ.
(11_) First 1r10t<e_thaut7 by Theorem S.i— (ii), % cz_é(]) € C(L), for any ideal I of L. Let I, JE C(L). Then
I=006(I)C 6o0d6(IVJ)and J= 6 0d(J)C & od(IVJ) (since ¢ o isisotone). Thus d od(IV J) is
an upper bound of I and J in C( ). Let K € C(L), such that I C K and J C K. Then I vV J C K implies
%o o(Iv J) - %o (55{(' (since K € C(L)). This shows that %o 0(I v J) is the supremum of I and J
inC(L)i.e.I¥YJ=4 o 5([ Vv J). As (0] € C(L) and L € C(L), (C(L),A,Y) is a bounded lattice. O

We know that the lattice Z(B(L)) is a homomorphic image of the lattice Z(L) (see Remark 3.2). But
interestingly we have

Theorem 4.2. The lattice C(L) is isomorphic with the lattice Z(B(L)).

Proof. Define the mapping ¢ : C(L) — Z(B(L)) by ¥(I) = 6(I) for each I € C(L), which is clearly a well
defined mapping.

(i) Let 9(I) = 9(J) for I, .J € C(L). Then we have §(I) = 6(J). Therefore 8 06(I) = § o6(.J) which implies
I =J (since I,J € C(L)). This shows that 1 is one-one.
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(ii) Let I be any ideal of B(L). Then § ( [) is an ideal of L (by Theorem 3.2 - (ii)) and § o ?( ) =1I (by

Theorem 3.4 - (i)). Then %oa( 5 (1) =6 (5(5 (1)) = 5 (606 (I)) = & (I). This shows that 8 (I) € C(L).

As w(?(l_)) = (5(%( I)=6o0 % (I) = I, we get v is onto.

(iii) Let I,J € C(L). Then by definition of ¢ and by Theorem 3.3 we get, Y»(IAJ) = (I NJ)=§INJ)

=6(I)ndé(J) =y(I)Ny(J). And by definition of ¥ in C(L) we get (I Y J)=06(I VY J) =4 (? od(IV J))
\%

=§(I Vv J) (since 6 o % is an identity map). Thus (I Y J) =d§(I V J) =6(I) Vv o(J) = y(I)
proves that ¢ is a homomorphism. From (i) - (iii) we get 1 is an isomorphism. O

Following theorem gives a necessary and sufficient conditions for an ideal I of L to be a member of C(L).

Theorem 4.3. For any ideal I of L, following statements are equivalent.
(1) I €C(L).
(i) For x,y € L {z}* ={y}** e e l=yecl.
(iii) For x,y € L{z}* ={y}* xze€l=ycl.
() I =U{{x}*™* 2 eI}
(v) Forx,y€ L, h(z) =h(y), z el = yel,
where h(x) = {M : M is a minimal prime ideal containing x}.
(vi) T is an a-ideal.

Proof. The equivalence of the statements (iii) to (vi) follows by Result 2.3.

(ii) & (ii): As {z}™ = {y}** & {«}* = {y}* for any =,y € L, the equivalence follows.

(i) = (ii): Let I € C(L). Let x,y € L such that {z}** = {y}** and z € I. Asz € I, we have {z}** € §(I).
But then, by assumption, we get {y}** € 6(I). This gives y € ? 0d(I). Again by assumption that I € C(L),
we get y € I. Thus the implication follows. -

(ii) = (i): Let I € Z(L) satisfying condition in (ii). By Theorem 3.4, we | have I C § o 6(I). To prove
d 0d(I) C I. On contrary assume that § od(I) € I. Then there exists z € %o d(I) such that = ¢ I. Then
{z}** € 6(I) which implies {z}** = {y}** for some y € I. But then, by assumption, = € I; a contradiction.

%
Hence 6 0d(I) C I. Combining both the inclusions, we get 6 od(I) = I. Hence I € C(L) and the implication
follows. Hence all the statements are equivalent. [

Using the property that I € C(L) if and only if I is an a-ideal, proved in above theorem, we get
Corollary 4.1. (a] € C(L) if and only if (a] = {a}** for any a € L.

Proof. Let (a] € C(L). Then by Theorem 4.3, (a] is an a-ideal of L. This gives {a}** C (a] (by definition of
a-ideal). As we obviously have (a] C {a}**, the proof of if part follows. Conversely, suppose (a] = {a}**. We
know that every annihilator ideal is an a-ideal, therefore {a}** = (a] is an a-ideal. Thus again by Theorem
4.3, we get (a] € C(L). O

I* € C(L) for any ideal I in L, because I* is an a-ideal of L (see Result 2.5). Hence we have
Corollary 4.2. The lattice (C(L),A,Y) is a pseudo complemented lattice.

Define Ag(L) = {{z}*:xz € L}. Then (Ao(L),A,V) is a lattice, where {z}*A{y}* = {2 V y}* and
{x}*V{y}* = {z Ay}*. This lattice is called as a lattice of all annulets of L. For any ideal I in L, the set
{{z}* : x € I} is a filter in A¢(L) and for any filter F' in Ag(L), the set {x € L : {z}* € F} is an ideal of
L. Let F(Ag(L)) denote the lattice of all filters in Ag(L). Then the maps « : Z(L) — F (Ao(L)) defined
by a(l) = {{z}*:x €I} and 8 : F (Ag(L)) = Z(L) defined by B(F) = {z € L : {z}* € F} are well defined
isotone maps.

We need the following results from [8]:

Lemma 4.1. ([8], Theorem 9). The map foa : Z(L) — Z(L) is a closure operator on I(L).

Lemma 4.2. ([8] Theorem 10).
For any ideal I in L, following statements are equivalent.
(i) I is an a-ideal.

317



(ii) Boa(l)=1.
Using above two(kemmas and Theorem 4.3 we get
e(L) = {1 €Z(L): 6 od(I) = I} —{IeZ(L): Boa(l)=I}. Hence an ideal I in L is closed with respect

%
to the closure operator § o ¢ if and only if it is closed with respect to the closure operator S o a defined on
Z(L). Thus we have

Corollary 4.3. For any ideal I of L, ? od(I)=1 if and only if foa(l)=1.

Let I be an ideal of L. If there exists a prime ideal P of L such that I C P and P is minimal in the class
of all prime ideals containing I, then P is called a prime ideal belonging to I. We know that any prime ideal
of L need not be an a-ideal. For this consider the lattice L = {0, a,b, ¢,d, e, 1} whose Hasse diagram is as in
Figure 3.1. The ideal (€] is a prime ideal but not an a-ideal. For, d € (e] but (d]** = L ¢ (e].

In the following theorem we show that a prime ideal belonging to an a-ideal is an a-ideal.

Theorem 4.4. Let I be an a-ideal of L. Let P be a prime ideal belonging to I, then P is an « ideal.

Proof. Suppose P is not an a-ideal. Hence there exist z,y in L such that {z}** = {y}**,x € Pbut y ¢ P
(see Theorem 4.3). Consider the filter F' = (L\ P) V [z Ay). Claim that F NI = (. Let F NI # ). Select
a € FNI. Then a € F implies a > r A s for some r € (L\P) and s > = Ay. But then a > r Az Ay and
therefore r Az Ay € I (as a € I'). Since {z}** = {y}**, using the Result 2.2, we get {r A z}** = {r Ay}**
and hence {r Az Ay} = {rAy}**. Since rAzAy € I and I is an a-ideal, by Theorem 4.3, we get r Ay € I.
Hence r Ay € P (since I C P). Now r Ay € P, P is a prime ideal and r ¢ P imply y € P; which contradicts
our assumption. Hence we must have F'N I = (). Therefore, by Result 2.4, there exists a prime ideal Q
containing I and disjoint with F. Thus Q C P. Moreover FNQ = ) and z Ay € F implies x Ay ¢ Q. Hence
Q # P (sincex € P=axz Ay € P)i e. Q C P. But this contradicts to the fact that P is minimal in the
class of all prime ideals containing I. Hence we must have P is an a-ideal. O

Making an appeal to Theorem 4.1, Theorem 4.3 and Result 2.6, we establish

Corollary 4.4. Let L and L' be bounded 0- distributive lattices and let f : L — L' be an annthilator
preserving onto homomorphism. Then we have

(i) If I € C(L), then f(I) € C(L').

(ii) If I' € C (L"), then f=(I') € C(L).

5 Conclusion

The present investigation provides a new way to define closure operator on the lattice of all ideals of a
bounded 0 - distributive lattice. Moreover the ideals closed with respect to this closure operator are a—
ideals. Therefore this work will motivate and useful to study more properties of a— ideals.
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