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INTRODUCTION

In 1906 Maurice Frechet introduced metric spaces in his work sur quelques points
ducalcul fonctionnel. However the name is due to Felix Hausdorff.Let X be an arbitrary
set,which could consist of vectors in R", functions, sequences,matrices,etc. We want to
endow this set with a metric;i.e a way to measure distances between elements of X.A
distance or metric is a function d: X x X— R such that if we take two elements x,y €
X the number d(x.y) gives us the distance between them.However, not just any function
may be considered a metric: as we will see in the formal definition ,a distance needs to

satisfy certain properties.

The real numbers with the distance function d(x,y) = |y-x| given by the absolute
difference ,and ,more generally, Euclidean n-space with the Euclidean distance , are
complete metric spaces.The rational numbers with the same distance function also form

a metric space ,but not a complete one.

The positive real numbers with distance function d(x,y) = | log (y/x)| is a complete
metric space.Any normal vector space is a metric space by defining d(x,y) = ||y-x||, see

also metrics on vector spaces .(If such a space is complete ,we call it a Banach space).
Examples:

e The Manhattan norm gives rise to the Manhattan distance, where the distance
between any two points , or vectors, i1s the sum of the differences between
corresponding coordinates.

e The cyclic Mannheim metric or Mannheim distance is a modulo variant the

Manhattan metric.

The maximum norm gives rise to the Chebyshev distance or chessboard distance, the

minimal number of moves a chess king would take to travel from x to y.

In 1992 B.C . Dhage proposed the notion of a D- metric space in an attempt to

obtain analogous results to those for metric spaces ,but in a more general setting . In
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a subsequent series of papers Dhage presented topological structures in such spaces
together with several fixed point results . These works have been the basis for a
substantial number of results by other authors.Unfortunately, as we will show, most
of the claims concerning the fundamental topological properties of D-metric spaces

are incorrect , nullifying the validity of many results obtained in these spaces.

We begin by recalling the axioms of a D- metric space.



CHAPTER 1
METRIC SPACE : DEFINITION & EXAMPLES

1.1 METRIC SPACE

In mathematics, a metric space is a set together with a metric on the set. The matric space is a function

that defines a concept of distance between any two members of the set, which are usually called points
1.1.1 Definition

A metric space is a pair (X, d) where X is a set and d is a mapping from XxX into R which

satisfies the following conditions

D1) d(x,y)=0,x, y € X (non-negativity property)
D2) d(x,y) =0, iff x=y (zero property)

D3) d(x,y)=d(y, x), X, y € X ( Symmetric property)

D4) d(x,y)<d(x,z)+d(z y),X,Yy,ze X (Triangle property)

L
R %4

The property D1 just states that a distance is always a non-negative numbers.

L7
"

The property D2 tells us that the distance identifies the points ie, if the distance between x

and y is zero, it is because we are considering the same point.

%+ The property D3 states that a metric must measure distance symmetrically. i.e, it does not
matter where we start measuring it.

«+ Finally the property D4, the triangular inequality is the generalization of the famous result

that holds for the Euclidean distance in a plane.

A function satisfying the above four conditions is called a metric, and the structure (x, d) is called a

metric space.

The function d is a non-negative real-valued function on X. the function d is also called distance

function or simply distance.
1.1.2 Open ball

Let (X, d) be a metric space. If a€X and r > 0, then the set
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{x:x€eX,d(x,a)<r},
Denoted by B(a), is called the open ball with centre a and radius r.

The open ball Bi(a) on R is the bounded open interval (a —r, a + r) with mid-point a and total length

2r. The open ball B«(a) on C is the set
{xeC:|lz—a| <r},

The open ball on C is also called the open disc.

|Z-al<r

1.1.3 Open Sets

Let (X, d) be a metric space. A set G < X is open if for each X€G there is an r > 0 such that B(x) c

G.
Examples :
(@) ThesetG={zeC:a<Rez<b }is open.
(b) Theset S={zeC:Rez<0} u {0} is not open.

Note that the empty set @ and the full space X are open sets. Observe that in any metric space (X, d),

each open ball is an open set.
1.1.4 Closed Sets

Let (X, d) be a metric space. The set G C X is said to be closed if the complement X — G is open.



1.1.5 Interior Points

Let (X, d) be a metric space and S a subset X. A point X€S is called an interior point of S if there
exist an open ball B:(x) such that Bi(x) © S. The interior of S, denoted by S°, is the set of all its interior

points.
1.1.6 Closure points

Let (X, d) be a metric space and S a subset of X. A point x€X is called a closure point of S if every
open ball centred on X contains at least one point of S. In other words, a point X€X is a closure point

of S if

B«(x)NS # @ for all r > 0.
The closure of S, denoted by S, is the set of all its closure points
1.1.7 Closed Ball

Let (X, d) be a metric space. Let aeX and let r > 0. Then the set {xe€X : d(x, a) < r } is called the

closed ball with center a and radius r.
Here is an example. Let (X, d) be a discrete metric space (i.e. d(x,y) =1 ifx#y, d(x, x) =0). Then
Bi(a)= {xe X : d(x,2) < 1} = {a};
xeX ;dx a)=1}=X;
Bi(a) = {a}.
1.1.8 Limit points

(X, d) be a metric space and S a subset of X. A point x€X is called a limit point (an accumulation
point) of S if each open ball B:(x) contains atleast one point of S different form x. In other words, a

point X€X is a limit of S if
B«(x)N(S - {x}) # @ for each r > 0.
It is clear that every limit point of a set must be a closure point of that set.

The set of all limit points of S is called the derived set of S, and is denoted by S'.
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Note that S=S U S’. Also, note that S is closed if and only if it contains all its limit points.
1 1

Example : Let X=R and S = {1, e }
2’ 3

0 is the limit of S.

1.1.9 Boundary

Let (X, d) be a metric space and S a subset of X. A point xeX is called a boundary points of S
if every open ball B«(x) intersects both S and S®. In other words, a point x€X is a boundary point of

Sif

B:(x)NS # @ and B(x)NS®# @ for all r > 0.

The boundary of S, denoted by oS, is the set of all its boundary points.
Note that dS = 3S°.

1.2 Convergence, Completeness

Just as a convergent sequence in real number can be thought of as a sequence of better and better
approximations to a limit, so a sequence of “points™ in a metric space can approximate a limit here.

In a metric space X, every convergent sequence is a Cauchy sequence.
A metric space is said to be complete if every Cauchy sequence converges
1.2.1 Definition of convergence

Let (X, d) be a metric space. Let {xa} be a sequence in X. The sequence {xx} is said to be convergent

to x in X if for every € > 0 there is an integer no such that
d(x,,x) < € forn = n,.
In symbols, we write
limx, = x.
Note that a sequence in a metric space can have at most one limit.
1.2.2 Definition of complete metric space
A metric space (X, d) is complete if any of the following equivalent conditions are satisfied.

» Every Cauchy sequence of points in X has a limit that is also in X.

» Every Cauchy sequence in X converges in X (ie, to some point of X)
11



» The expansion constant of (X, d) is <2
» Every decreasing sequence of non-empty closed subsets of X, with diameters tending to 0,

has a non-empty intersection.
1.2.3 Continuous Function

Let (X, d1) and (X2, d2) be metric spaces. The function f : X;— X3 is said to be continuous at a € X;

if for each € > 0 there exists 6 > 0 such that,
d, (f(x),f(a)) < € wheneverd,(x,a) < §.
Note that & depends on € as well as on a.
The function f : X;— X3 is said to be continuous if it is continuous at each point of Xj.
1.2.4 Uniform continuity

Let (X1, di) and (X2, d2) be metric spaces and let f : X; - X, be a function. We say that f is

uniformly continuous if for every € > 0 there exists & > 0 (depending only on €) such that
do(f(x1), f(x2)) < € whenever d; (xy,%;) < 6.

Note that every uniformly continuous function is continuous but the converse is not true. As an
. 1. .
example, let X; = (0,1] and X, = R both with (x, y) = |x —y| . Then f(x) = ~ is continuous but

not uniformly continuous.

1.2.5 Notes

» Ifone defines d: X x X — R* U{0}, then the non-negativity property is redundant.
» The non-negativity property of a metric is a consequence of its other properties as for any x,
yeX
0 =d(x,x)=<d(x, y)+ d(y, x) = 2d(x, y)
» Once we are convinced about the underlying metric, we express (X, d) by mere X with the
metric structure implied.In a metric space (X, d), d(X1, Xu) < Z}:ll d(Xi, Xi+1) forany
x1,x2,x3, .....xn & X. It is an extension of triangle inequality and known as polygonal

inequality
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1.3

A d{A.B)

d(B.A) diC.A)

B diB.C) =

» The conditions which d satisfies just mimic the properties of the distance we are
accustomed for real numbers, and hence these properties bear same names as their real

line counter part.

Ignoring mathematical details, for any system of roads and terrains, the distance between two
locations can be defined as the length of the shortest route connecting those locations. To be
a metric there should not be any one way roads. The triangle inequality expresses the fact that
detours are not shortcuts. If the distance between two points is zero, then the points are

indistinguishable from one another.

EXAMPLES OF METRIC SPACES

1.3.1 Let X=R%and d is defined as d: X x X —R such that d((x1, x2), (y1, y2))=

[(x1-y1)> + (x2— y2)?] "*show that d is a metric space on R??
Solution.

X = (X1, X2)
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y=(y1y2)
z=(z1, 72)
DI1) To show d(x,y)>0
D(x, y) = [(x1—y1)* + (x2— y2)*] %> 0
D2)  To show d(x, y)=0 iff x=y
d(x, y)=0 =[(x1— y1)* +(x2— y2)’] =0
=>(x1— y])2 + (x2— yz)2 =0
=>(x1— y])2 =0 & (x2—y2 )2 =0
=>x1—y1=0 & x2—y2=0
=SXI=y1 & xR2=32
ZFR=Y
D3)  To show d(x, y) =d(y, x)
d(x, y) = [(x1—y1)*+ (x2— y2)] *
=[(y1—x1)*+ (y2—x2)*] **
=d(y, x)

D4) To show d(x, y) <d(x, z) + d(z, y)

Let ai= x1-z1
ax= X2-22
b1 =zi1-yi
b2 = z2-y2

d(x, y) = [(a1 +b1)® + (a2 + b2)?] **

d(x, y) =[ =1 (ax+br)’] *

14



d(x, z) = [a12 + ax2] Y2
:[Efc:l akzl i
D(z, y)=[bi* + b*] **

=[%F-1 b "

To show

[Zi=1 ak2+bk2] Vzi [Zi=1 akZ] 1 5 [Zi=1 bkz] %)

Squaring on both sides,

Ei:l ak2+bk25 Zi:l akz + Zi:l bkz

Eﬁ=1 akbk < @ﬁ=1 akg) 1/2 (Z§=1 bkz) @

( which is Cauchy-schwartz inequality)

All 4 conditions are satisfied .

Therefore d is a metric on R2

This is known as Euclidean metric on R2.

1.3.2 Let X be a non-empty set and define a mapping d: XxX—R as

2 _fo0, when x=y
follows: d(x, y) _(1 , whenx=y ¥V x,yEX)

Show that d 1s a metric on X.
Solution,
D1) d(x, y) =20, by definition of d

15



D2) d(x, y) =0 iff x=y
D3) if x=y , then d(x, y)=0 =d(y, x) and

if x#y, then d(x, y) =1=d(y, x).
Hence d(x, y)=d(y, x) for every X,y € X

D4) Let x, y, z be any 3 elements in X.

If x=y, then d(x, y)=0, also d(x, z) > 0 and d(z, y)=0.

Hence d(x, y) < d(x, z) + d(z, y).

If x#y, then either x#£y#z or x#£y=z . ie, either d(x, y) =d(x,z) =d(z, y)=1 or d(x,
y) =d(x, z)=1 and d(z, y) =0.

Hence in both situations, d(x, y) < d(x, z) + d(z, y) Thus,

d(x,y) <d(x, z) +d(z, y) forevery X, y,z€ X
Hence, d is a metric on X and (X, d) is a metric space.

The metric space (X, d) so defined is known as Discrete (Trivial) metric space.

1.3.3 Letamapping d: RxR —R be defined by d(x, y) = % X,y € R. Show

that d is a metric on R.
Solution.
DI1) d(x., y) =0, by definition of d.

D2) Ifd(x,y)=0

=yl _
L+x-y|

s’

=>|x-y| =0 => x-y =0 => x=y ie, d(x, y) =0 iff x=y

D3) dx,y)=—22 = _ 44 x) x,yeR

1+|x-y| 1+|y—x|

o lx=yl _1-1+|x—-y|
be A= 1+x-y| —  1+|x—y]

_14+|x—y| 1
T14lx-y| 1+ )x-y|

16



B 1
1+|x=-2+42-y|

1 _ |x=2|+]2-y|
d(x,y) = 1- 1+[x=2]+|2-y| ~ 1+|x-2|+|2-y|
|x—2| t [2-y1
=d(x,y) < 1+[x—2|+|2-y| 1+|x—2|+]2—y|
Sd(x,y) < oy B gz td(zy)

1+]x-2| 1+|2-y|
ie,d(x, y) < d(x, z) +d(z, y)

So d satisfies all the conditions. Therefore d 1s a metric on R.

1.3.4 Let R be the set of real numbers. Show that the function d:RxR—R defined by d(x, y)

= [x-y| forevery X,y € R is a metric on R.
Solution.
Here,
D1) [x-y| 20, forevery x, y € R 2d(x,y) 20, X,y € R
D2)  |x-y| = 0 iff x-y=0 so that d(x, y)=0 iff x=y.
D3) Ix-y| =ly-x|, for every x, y € R=d(x, y) =d(y, x), X,y€eR
D4)  x-y|= [(x-2)+(z-y)|

< |x-z| + |z-y|, for every X, y, ze R=>d(x, y) <d(x, z) + d(z, y), X, y, z€ R.

Since d satisfies all conditions, d is a metric on R.
The above metric d is known as usual metric on R and the metric

space (R, d) is known as the Real line.

1.3.5 Let R be the set of real numbers. Show that the function d:RxR—R defined by d(x, y)

+ |x?-y?|, for every x, yeR is a pseudometric on R which is not a metric on R.

17



Solution.

Here,
DIl) [x2-y?[>0, for every X, yeR => d(x, y)>o0, V X, yeR.
D2) d(x, x)=x%-x%=0 ¥ xeR
D3) d(x, y)=Ix*y* =ly*-x? =d(y, x), Vx, yeR
D4) d(x,y) = [x2-y3=|(x2-z)+(22-y)| < [x2-22+22-v2

=2d(x, y) <d(x, z)+d(z, y), V X, y, zeR
Hence d is a psedometric on R. We now show that d is not a metric on R.
Here, d(x, y) = [x*-y*| =0 ©<x%-y*=0
oxl=y?
—sx=ty
Showing that d(x, y)=0 does not always be x=y.

For example, we see that d(1,-1) = |12-(-1)*]=0, where 1#-1. Hence the function d

is not a metric on R.

1.4 PRODUCT OF METRIC SPACES

1.4.1 Definition

Let (X1, d1) and (X2, d2) be two metric spaces. Then for any pair of points x=(xi, x2) and

y=(y1, y2) in X1xX2, consider the function d:X1xX2—R defined by:

d(x, y)=max{di(x1, y1), d2(x2, y2)} using the facts that di1 and d2 are metrics on X1 and X2

respectively. We shall prove that d is a metric on X1xX2.

DI)

d(x, y) = max{di(x1, y1), d2(x2, y2)}=0
18



D2) d(x, y) =0<>max {di(x1, y1), d2(x2, y2) }=0
—di(x1, y1)=0 and d2(x2, y2)=0
+x1=y1 and x2=y2
(X1, x2) = (y1, y2)

—X=y
D3) d(x, y)=max (di(x1, y1), da(x2, y2)}
=max{di(y1, x1), d2(y2, x2)}
= d(y, x) iv) For all x=(x1, x2), y=(v1, y2),

z=(z1, z2) in X1xX2, we have:

d(x, z)+d(z, y)= max{di(x1, z1), d2(x2, z2) }+max{di(z1, y1),
d2(z2, y2)} Zmax{di(x1, y1), d2(x2, y2)}=d(x, y)

Thus d(x, y) < d(x, z)+ d(z, y) for every X, y, zeX1xX2. Hence d is a metric on X1xX2 and

the metric space (X1xX2, d) is called the product of metric spaces (X1, di) and (X2, d2).
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CHAPTER 2

BOUNDED SETS AND EQUIVALENT METRICS

2.1 Bounded Sets in Metric Spaces

2.1.1 Definition

A subset S of a metric space (X,d) is bounded if there exist xo€ X and k € R such that d(x, xo)

<k forall x €S.

If S satisfies the definition for some x0€ X and k € R, then it also satisfies the definition

with xoreplaced by any other point x1 €X and k replaced by k+d(xo, x1).
For if d(x, x0) <k then, d(x, x1) <d(x, x0) + d(xo0, x1)<k+ d(xo, X1).
If S satisfies the definition then,

d(x, y) <d(x, x0) + d(x0,y) <2k for all x, y € S.

2.1.2 Definition

If S is a non-empty bounded subset of a metric space with metric d then the diameter of

S is sup{d(x, y): x, y €S}. The diameter of the empty set is 0.
If A is not bounded, then we take the diameter as infinity.
d(A)=o0

From the above definition, a set has diameter zero if and only if the set is a singleton

set and a nonempty set A is bounded if and only if it has a finite diameter.

2.1.3 Properties of bounded sets
(i) Any subset of a bounded set is bounded.

Let B be a bounded set with d(x, y) <k for any x, y € B. In particular this holds
for X, y in any subset A C B. So A is bounded.

(i1) The union of a finite number of bounded sets is bounded.
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Given a finite number of bounded sets B1, Ba,...... ,Bn with diameter k1, ka,...... kn

respectively.
Let k = maxn kn

Pick a representative point from each set an € Ba and take the maximum distance between
any two, k = maxmn d(am, an), it certainly exists as there are only a finite number of such

pairs.

Now for any two points X, y € U Bn, that is X € Bi, y € Bjand using the triangle inequality

twice,
d(x, y) < d(x, ai) + d(ai, aj) + d(aj, y)
<ki+k+kj
<2k +k
An upper bound for the distances between points is UN_, B is found.

2.1.4 Examples

1) In any metric space, finite subsets are basis. In N, only the finite subsets are bounded
(since d (ag, an) < N for all n implies n < N). Consequently, N, Q, R and C are all

unbounded.

(ii) In a discrete metric space, every subset is bounded. A metric space may be

“large” (non - separable) yet be bounded.

(ii1) A set B is bounded it is a subset of a ball, There existsr >0, ax, B C B«(a)

Proof
Balls (and their subsets) are obviously bounded.
For every x, y € B«(a),
d(x, y) <d(x, a) +d(y,a) <2r

Conversely if a non - empty set is bounded by R > 0, pick any points

ae€ X and beB to conclude x € Br(a):

21



For every x € B, d(x, a) <d(x, b) + d(b, a)

<R+ 1+d(b,a)=r

(iii) The set [0, 1] U [2, 3] €R is bounded because it is the union of two bounded sets.

2.1.5 Theorem

Every Cauchy sequence in a metric space (X, d) is bounded. That is, the different terms of a

Cauchy sequence form a bounded set.

Proof

If (xn) is a Cauchy sequence in (X, d) taking € = 1, there exists no such that

d(xn, x0) < 1 for all n > no

For other values of n from 1 to no, let us take

M = max d(Xn, X0) <o, | <n<no

Hence, we have d(Xn, X0) <M + 1 for all n.

So for all m, n we have d(xn, Xm) < d(Xn, Xn0) + d(Xm, Xn0)
<2(M+1)

Hence, d(Xn, xm) <2(M + 1) < .

Therefore, every Cauchy sequence in a metric space is bounded.

2.2 Totally Bounded Set

2.2.1 Definition

A subset B C X is totally bounded when it can be covered by a finite number of

¢-balls, however small their radii ¢,

For every € > 0, there exists N € N, there exists ai, az,....,an € X

B € UN_, B(ao)
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2.2.2 Easy consequences

(1) Any subset of a totally bounded set is totally bounded (the same g-cover of the

parent covers the subset).

(ii) A finite union of totally bounded sets is totally bounded (the finite collection of

g-covers remains finite).
(ii1) A totally bounded set is bounded (it is a subset of a finite number of bounded balls).
2.2.3 Examples

(1) The interval [0, 1] is totally bounded in R because it can be covered by the

[

balls. Be(ng) forn=0, 1,....N where % -1 <N<w -

m

(i1) Not all bounded sets are totally bounded. For example, in a discrete metric space,

any subset is bounded but only finite subsets are totally bounded (take € < 1).
2.3 Equivalent Metrics

2.3.1 Definition

Let X be a set and let d and d” be two metrics on X. We say that d and d” are equivalent if

for every subset U C X,
Uisopenin(X,d) & Uisopenin(X,d")

In otherwise, two metrics are equivalent if they define the same collections of open

subsets on X. Itis denoted asd ~ d’.
2.3.2 Examples

1. Let (X, d) be a metric space and p be a function on X x X defined by,

p (x,y)=min {1, d(x, y)} for every x, y € X then,
(a) (x, p) is a bounded metric space

(b) p is equivalent to d
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Solution
(a) Given that p (x, y) = min {1, d(X, y)} ~—--------—- (1)
(i) dx,y)=>0=2min {1,d(x,y)} >0 =2p(x,y)=0
(i) p(x, ) =02 min {1,d(x,y)} =02 d(x.y) =0 > x =y

(1it)p(x, y) =min {1, d(x, y)} = min {1, d(y, x)} = p(y, X), for every x, y eX.

(iv) Let X, y, z be any 3 points of X. If atleast one of d(x, y) and d(y, z) is=>1 also d(x,

z)>1
Then min {1, d(x, y)} =1 so that p(x, y) =1 ,by (1)

Therefore, p(x, y) + p(y, z) > 1 > p(x, z).
Also in case when d(x, y) < I and d(y, z) < I,

we have p(x, y) =min {d(x,y), 1} =d(x,y) and
p(y, z) =min {d(y, 2), 1} =d(y. 2)
Therefore p(x, y) + ply, z) =d(x, y) + d(y, z)
> d(x, z), by triangle inequality
> p(x, z), since p(x, z) < d(x, z),by (1)
Thus p(x, y) + p(y, 2) = p(X, z) , for every x, y € X.
Hence p is a metric on X and (X, p) is a metric space.
From (1), p(x, y) <1, for every x, y €X
Hence d(X, p) is a bounded metric space.
(b) To show that p is equivalent to d.

For this purpose we must show that every open set is (X, p) is open in (X, d) and

vice versa.

Let G be any open subset of X in (X, p) and let x be any point of G.

Then there exist an open set

iyeX:px,y)<r} CG -—— 2)
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From (1), p(x, y) =d(x, y) forevery x,y € X
Hence using (2) we get
{yeX:dx, y)<r}CGC{yeX:pkx,y)<r} CG

showing that each point of G is the center of an open sphere in (X, d) contained in
G. Hence G is also open in (X, d) and therefore, every open set in (X, p) is open in

(X, d).

Next, let H be an open set in (X, d).

Then for each x € H, there exists an open sphere
weX dix, vy, 1 CH

r' =min {1, r} sothatr’ <r Then

we have

yeX:px,y)<r} C{yeX:d(x,y)<r} CH

showing that each point of H is the center of an open sphere in (X, p)

contained in H.
Hence H is also open in (X, p).
Therefore, every open set in (X, d) is open in (X, p).

Hence d and p are equivalent metrics.

2. Let (X, d) be a metric space and let

d(xy)

% 5
d*(x, y) = 1+dxy)

,forall x,y e X

prove that d* is a bounded metric on X, which is equivalent to d.

Solution:

Given d*(x, y) = — f(;"(ij) , for all x, y € X <eemee(1)

(1) Since d(x, y) >0, (1) show that d*(x, y) >0

(i) d*(x, y) > 0 @d(x, y) = 0, by (1)
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& X =y, since d 1s metric on X.

(i) d*(x, ) = — g = o = dh(y, X)
since d is a metric on X =2 d(x, y) = d(y, x).
(iv) For all x, y, z in X, we have
d*(x, y) + d*(y, 2) 1 +cil((}:-);)) 1 j?(l;)z)
d(xy) d(y.z)
T 1+dxy) +d(y.z) 1+d(xy) +d(yz)

since d is metric = d(x, y) =0 and d(y, z)=0
Lemma
Let di, d2 and dw be the following metrics on R*:
o di((x1, y1), (x2, y2)) = | X1—X2 | + | yi—y2 |
e d2((x1, y1), (X2, y2)) = \f((x1—x2)2 + (yl—yz)z)

* do((X1, y1), (X2, y2)) = max { | X1—X2 | ! | yi1-y2 | }

Then for each (x1, y1), (x2, y2) € RZ,

Sdi(Ca, yn), (2, y2)) 1 < ld2(0xet, yn), (2, y2)]
< dul((x1, y1), (X1, y1))
Proof
By definition of the metric d2,
da((x1, y1), (x2, y2)) = V((x1-x2)* + (y1-y2)%)

< \f( max { I X1—X2 | 2 | yi—y2 I 2 + max { | X1—X2 | 2 I y1-y2 ] 4

= \1(2 max { | X1—X2 | .} |y1—y2 I D
=2 de((x1, y1), (x2, y2))

That proves the inequality between d2 and de«.

26



Now we compare di and d2.

Since everything is positive, proving the inequality between d1 and d2 in the statement is
equivalent to proving the resulting inequality after squaring both sides. In other words, we

have to prove

[Ixi =%l + ly1=yalP < S[(x1=x2)? + (y1 -y2)’]

ale

Leta =| X1—X2 | and b= | yi—y2 |
Then above inequality is same as

(a+b)><2 (a>+ b?) which is equivalent to a’+b*<a’+ b2+ (a—b)?and this last

inequality is obviously true.

Therefore, the inequality between di and d2 in the statement is true.
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3.1

CHAPTER 3
D-METRIC SPACES

Definition

A real function D on X x X x X is said to be a D-metric on X if
D(1) D(x,y,z)>0forall x,y, z€ X(non-negativity)

D(2) D(x,y, z)=0 if and only if x=y=z (coincidence)

D(3) D(x,y,z)=D(p(x,y, z)) for every X, y, z € X and for any permutation p(X, y, z) of X,

y, Zz (symmetry)

D) D(x,y,z) <D(x,y, u)+D(x, u, z)+D(u, y, z) for every x, y, z, u € X (tetrahedral

inequality)

A D-metric space is a pair (X, D) ,where D is a D-metric on X.

3.2 Examples of D metric spaces

3.2.1 Example

For x, y, z € R define

Di(x, y, z)= |x-y| + |y-z| + |z-x|

Du(x, y, z)=max{|x-y|, [y-z|, |z-x] }

Then (R,D1) and (R,D«) are D-metric spaces.

3.2.2 Example

Define a function Don X x X x X by

0 ifx=y=z

Dix, v, 2) = )
X, ,2) {1 otherwise

then D is a D- metric on X and is called the discrete D-metric on X

3.3 Notes

3.3.1 Remark
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The D-metrics given in examples!.2,1.3 satisfy the following properties:

For every x,y, z,u,vin X

D(5) D(x,y,2)< D(x,z z)+D(z,y,y)

D(6) D(x, x,y)=D(x,y,y)

D(7) D(x,y,y)<D(x,y, z)

D) D(x,y, 2)< D(x, u, v) +D(u, y, v)+D(u, v, z)

3.3.2 Remark

Clearly D(7)=D(6).The following example shows that D(6) does not necessarily imply D(7)

Suppose X has atleast three elements. Define D on X x X x X by

0 ifx=y=12z
D(x, y, z)= % if x, y, zaredistinct
1 otherwise

Then (X, D) is a D=metric space in which D(6) holds but D(7) fails to hold
34 Some theorems of D-metric spaces

34.1 Theorem

If in a D-metric space (X, D), D(5) holds then each of the function d: XxX—R" defined by
(1) for 1<p<eo d(x, y)={DP(x,y, y)+ DP(x, x, y)}'"P is a metric on X.

(2) d(x,y) =max{D(x,y, y),D(x, x, y)} forall x, y e X is a metric on X.
Proof

we prove (1) ,The proof of (2) is similar.

Clearly d(x,y)=>0for allx,y € X and d (x,y)=0if and only if x =y
Let x,y.z€ X.

For 1 <p<od(x,y)={DPx, vy, y)+DP(x, x,y)}'*

={D"(y, y, x )+ D"(y, x, x)}'"?
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= {D"(y, x, x) + D*(y, y, x)}'"?
=d(y, x)
dx,y)= {D(x, y, y)+ D(x, x, y)}'?
<{(D(x, z, 2)tD(z, y, Y)) + (D(x, X, 2)+(D(z, z, y))’}'"? (by D(5))
<{D'(x, z, z) +DP(x, X, )}'? + {D(z, y, y+DP(z, z, )} *
=d(x, z) + d(z, y)
Hence d is a metric on X.
3.4.2 Theorem

Let D be a real function on X x X x X satisfying D(1),D(2),D(3),D(7) and D(8) then D is a D-

metric on .
Proof : It is enough to prove D($).Let x,y,z € X
D(x,y,z)< D(x,u,u) +D(u, y,u) + D(u,u,z) (using D(8) )
< D(x,y,u) +D(x,u,z) + D(u,y,z) foreveryu€X (byD(7))
Thus D(4) holds and hence D is a D-metric on X.
3.4.3 Theorem
Let (X, d) be a metric space. Define real functions D D» D3 Dson X x X x X by
Di(x,y,z) = d(x,y) +d(y,z) + d(z,x),D,(x,y,2z) = max{d(x,y),d(y,z),d(zx)},
Ds(x,y,z) = {D;(x,y,2)if x,y,z are distinct D, (x, y, z)otherwise
Di(x,v,2) ={D(x,y,2)if x,y,z are distinct D,(x,y,z)otherwise,
Then D1, Dx D3 D4 are D-metrics on X.
proof
That D, D are D-metrics can be proved easily. As the proofs for D3 D4 are similar, we verify
that D4 is D-metric.

For this, it is enough to verify the tetrahedral inequality.
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Letx,y,zzu€X.

Case(i): x, y, z are distinct.

Without loss of generality , we assume that d(x,y) < d(y,z) < d(z, x).
Subcase(i):

ifué {x,y,z}then Dy(x,y,z) = d(x,2) < d(x,u) + d(w,z) < Dy(x,y,u) + Dy(x,u,z) +
D4(u,y,z)

Subcase(ii):

ifu=xthen Dy(x,y,2) = Dy(u,y,2) < Dy(x,y,u) + Dy(x,u,z) + D4(u,y,2)
the proof is similar if u ==y oru = z.

Case(ii):Assume X =y # z.

Subcase(i):

ifué {y,z}then Dy(x,y,2z) = d(y,z) + d(z,y) < dy,u) + d(u,z) + d(x,u) =
dw,y) < Dy(x,y,u) + Dy(x,u,2) + Dy(u,y,2)

Subcase(ii):
ifu=ythen Dy(x,y,2) = Dy(x,u,2) < Dy(x,y,u) + Dy(x,u,z) + D,(w,y,2)
Subcase(ii):

ifu=z#ythenDy(x,y,z) = Dy(x,y,u) < Du(x,y,u) + Dy(x,u,z) + D,(u,y,z). Hence D4y

is a D-metric on X.

In this section we discuss various types of convergence associated with a D-metric.
3.5 Definitions

3 .5. 1 Definition

A sequence { Xn } in a D-metric space (X, D) is said to be D-convergent (or convergent) if there
exists an element x in X such that for given € > 0, there exists a positive integer mo such that D(Xx,

Xm, X) < & forallm=>mg, n>myp

In such a case, we say that {x,} converges to x and x is a limit of {x,}.
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3.5.2 Definition

A sequence {xn} in a D-metric space (X, D) is said to be D-Cauchy (or Cauchy) if for given ¢ > 0,

there exists a positive integer mo such that D(xn, Xm, Xp ) < € for all m > mo, n > my, p = mo.
3.5.3 Definition

Let (X, D) be a D-metric space and {x,} be a sequence in X, we say that {x,} converges strongly to

an element x in X if

(i) D(Xn. Xm, X) = 0 as m,n = o

(ii) {D(y, y, xn )} converges to D (y, y, x) forally € X .
3.5.4 Definition

Let (X,D) be a D-metric space and {x,} be a sequence in X , we say that {x,} converges very

strongly to an element x in X if

(i)D(XnxmXx) = 0 as m,n = oo

(i1) {D(y,z, xn)} converges to D(y,z, x) for all y,z = X .
3.5.5 Remark

It is clear that very strong convergence implies convergence, but converse is not true. It is also clear
that in a D-metric space, every strongly convergent sequence has a unique strong limit where as
limits are not unique under convergence. We now prove that convergence and strong convergence

are equivalent in certain cases.
3.6 Theorem.

Let (X,D) be a D-metric space satisfying D(5). Then {xan} converges to X in (X,D) strongly if and

only if {X,} converges to x in (X,D) and D(x, x, x,) = 0.

Proof. Let {x,} be a D-convergent sequence in X with limit x , D(x, x, x,, ) =0 and € > 0. Then

there exists a positive integer mo such that D(x,x,Xxn) < & for all n>mp. Let y€ X .
For n>mp  D(y,y.xs) < D(xn.X.x) + D(x,y.y.) (By D(5))
this implies that |[D( y,y,xa) - D( y,y,X)| < D(x,X,xn) <& foralln > mo .

3.7 Theorem
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Let (X,D) be a D-metric space satisfying D(7),D(8) then the real function d on X x X defined by

d(x, y)=D(x, y, y) is a metric on X and the following are equivalent.

(1) lim xp, =xin (X, d)
n—oo

(2) lim x, =xin(X, D)
n—oo

(3) lim x, =x strongly in (X, D)

Mn—00

Proof: From proposition it is clear that d is a metric on X.

Assume (1) ?lim xn =xin (X, d)

Let € >0 .Then there exists a positive integer mo such that d(x, x») < &/2 for all n >mq.
Forn, m > mg , D(X, Xn, Xm) < D(X, X, Xm) + D(X, X, Xn)
= d(X, Xm) + d(X, Xn) <€ (using D(8)).Thus (1) =(2).

Assume (2) lim x, =xin (X, D)
n—oo

Let € >0 .Then there exists a positive integer mo such that D(Xn, Xm, X) < € for all m >mg, n >my.
Fory € X and n>mo, D(y, y, Xn) < D(X, Y, Xn) (by D(7))
<D(x, X, Xn) + D(y, x, x)  (by D(8))
= D(X, Xn, Xa) + D(y, y, X)
( by D(6),since D(7) implies D(6) )
This implies that | D(y, y, Xa) - D(y, ¥, X) | < D(X, Xa, Xa) <€/2 for all n >my.
Hence {D(y, y, Xa)} converges to D(y, y, x) for all y in X.
Thus (2)=(3), (3)=(2) is trival ,

Assume (2) lim x, =xin (X, D)
n—oo

Let € >0 .Then there exists a positive integer mp such that D(X,, Xm, X) < € for all m >mg, n >mg
For , n>mg d(x, xn) =D(X, X, Xa) < D(X, Xm, Xa) <€ . (by D(7) )

Hence lim x, =xin (X, d). Thus (2) = (1).

n—oco
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CONCLUSION

In this project I tried to study the distance between points in a set. In everyday
life, the question * what is the distance between A and B ?” is ambiguous. The
standard definition of distance is the length of the straight line segment with one end
at A and the other end at B . It generalizes the idea of distance between two points on

the real line.

The idea of distance between two points on real line plays a vital role in
formulating the basic thing like limit, continuity, differentiability, convergence in
Real Analysis.By doing this project, I studied about different metric spaces such as
discrete, dilation, usual, Euclidean etc. I heard that metric space is very interesting

topic. So I decided to take it as my project topic.

34



BIBLIOGRAPHY

¢ Walter Rudin , ‘Principles of Mathematical Analysis’ ,India, MC
GrawHill Education , 3 Edition 2017.

%+ Wilson A Sutherland , ‘Introduction to Metric and Topological
Space’, OUP UK, 2" Edition 20009.

% Joseph Muscat, ‘Functional Analysis : An introduction to
Metric Spaces’, Springes Nature , 2014.

% S Kumaresan , ‘Topology of Metric Spaces’, Alpha Science
International,2005.
Journal:

% Ramabhadrasarma and S.Sambasivarao, ‘On D-Metric spaces’

JSSN 2320-5822,2013.
Website:
% Wikipedia
URL

1. Metricspace
https://en.m.wikipedia.org/wiki/Metric_space#:~:text=
From%20Wikipedia%?2C%?20the%20free%20encyclo
pedia satisfies % 20a% 20few%20simple%20properties

2. https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/

wiki/Complete metric space.html#:~:text=In%20math
ematics %2C%20a%20complete % 20metric.an %20ele
ment%200f%20that%20space

3. Completemetricspace

https://en.m.wikipedia.org/wiki/Complete_metric_spac

€

35



