Vivekanand College Kolhapur (Empowered Autonomous) Department of Mathematics B.Sc. III (Sem V) Abstract Algebra Surprise Test 2024-25

Time & date: 16/09/2024 Total Marks: 30

Sr. No.	Roll No.	Name of student	Sign.	Marks
1	8249	ARDALKAR ADITYA ASHOK	Aproho	20
2	8250	BHOGAM SUJATA KRISHNAT	3ho Jam	10
3	8251	BHOSALE AASHA SADIK	Bho sale	14
4	8252	CHOUGULE PRATEEK ANIL	Ab	Mana
5	8253	CHOUGULE VISHAKHA MAHADEV	Ab	_
6	8254	GANBAVALE TEJAS SANTOSH	T.S.G	16
7	8255	JADHAV SHRIDHAR SUHAS	Jadanste	18
8	8256	KALAKE ABHIJEET LAXMAN	Shijeet	30
9	8257	KALAMKAR SANIKA JAYVANT	Kalamba	20
10	8258	KAMBLE AVISHKAR SUDESH	Askumble	
11	8259	MORE PRANALI ASHOK	morgon	12
12	8260	PATIL ARPITA JINESHWAR	Am	20
13	8261	SAJNIKAR DIVYA NETAJI	Sough	18
		VADICHARLA SANDHYA	Gurushy	18
14	8262	KRUSHNAMURTI		

HEAD

WE'S A MENT OF MATHEMATICS

AND COLLEGE, KOLHAPUR

WE'S AUTONOMOUS)

Vivekanand College Kolhapur (Empowered Autonomous)

Department of Mathematics

B.Sc. III (Sem V) Abstract Algebra Surprise Test 2024-25

Time & date:

Total Marks: 30

Name of the student:

Abhijeet Laxman Kalake

Roll no.: 8256

- A group is called Abelian if
 - a) It is finite
 - لله It is commutative
 - c) It has an identity
 - d) It has an inverse
- 2. The set of integers under addition is
 - a) Finite group
 - (b) Infinite Abelian group
 - c) Non-Abelian group
 - d) Not a group
 - 3. In a group G, the identity element is
 - (a) Unique
 - b) May not exist
 - c) Can be more than one
 - d) None of these
- A. Which of the following is a cyclic group?
 - $-a)(\mathbb{Z},+)$
 - b) $(\mathbb{Q}, +)$
 - c) $(\mathbb{R}, +)$
 - d) $(M_2(\mathbb{R}),+)$
 - 5. The order of a subgroup always
 - Divides the order of the group
 - b) Equals the order of the group
 - c) Is greater than the order of the group
 - d) May not relate to group order
 - 6. The centre of a group Z(G) is defined as
 - a) Set of all inverses
 - Set of all commutative elements $\{x \in G: xg = gx \forall g \in G\}$
 - c) Set of all subgroups
 - d) None of these
 - The alternating group A_n consists of
 - a) All permutations of n elements
 - b) All odd permutations
 - All even permutations

d) All disjoint permutations
8. Fuler's theorem states: If (a n)=1 then
8. Euler's theorem states: If $(a,n)=1$ then a) $a^n \equiv 1 \pmod{n}$
$b) \hat{a}^{\phi(n)} \equiv 1 \pmod{n}$
c) $a^{n-1}\equiv 1 \pmod{n}$
d) None
9. A subgroup H of G is normal if
(a) aH = Ha ∀ a∈G
b) H = {e}
c) Order of H divides order of G
d) H is Abelian
10 The kernel of 1
10 The kernel of a homomorphism is always a) A subgroup
h normal and
(b) A normal subgroup c) A cyclic group
d) The identity only
d) The identity only
11. If φ: G→H is a group homomorphism, then
(a) $\phi(eG) = eH$
b) $\phi(eG) \neq eH$
c) $\phi(eG) = 0$
d) None of these
12. The First Isomorphism Theorem states:
(G) Where H=ker ϕ
b) G≅H always
c) G/H ≅G
d) None of these
13. Every coset of a normal subgroup forms
a) A subgroup
b) A group under induced operation
c) A field
d) None of these
1/10
14. If a group homomorphism is bijective, then it is called
a) Endomorphism
b) Automorphism
Somorphism
d) Homomorphism only
5. The quotient group G/II with 12.
15. The quotient group G/H exists if and only if
a) H is cyclic
H is normal
c) H is finite
d) H is Abelian

Vivekanand College Kolhapur (Empowered Autonomous)

Department of Mathematics

B.Sc. III (Sem V)

Abstract Algebra Surprise Test 2024-25

Time & date:

Total Marks: 30

Avishkar Sudesh Komble Name of the student:

Roll no.: 8258

- 1. A group is called Abelian if
 - a) It is finite
 - b) It is commutative
 - c) It has an identity
 - d) It has an inverse
- 2. The set of integers under addition is
 - a) Finite group
 - b) Infinite Abelian group
 - c) Non-Abelian group
 - d) Not a group
- 3. In a group G, the identity element is
 - a) Unique
 - b) May not exist
 - c) Can be more than one
 - d) None of these
- 4. Which of the following is a cyclic group?
 - $a)(\mathbb{Z},+)$
 - b)(Q,+)
 - c) $(\mathbb{R}, +)$
 - d) $(M_2(\mathbb{R}),+)$
- 5. The order of a subgroup always
 - (a) Divides the order of the group
 - b) Equals the order of the group
 - c) Is greater than the order of the group
 - d) May not relate to group order
- 6 The centre of a group Z(G) is defined as
 - a) Set of all inverses
 - b) Set of all commutative elements $\{x \in G: xg = gx \forall g \in G\}$
 - c) Set of all subgroups
 - d) None of these
- 7 The alternating group An consists of
 - a) All permutations of n elements
 - b) All odd permutations
 - All even permutations

d) All disjoint permutations
8. Euler's theorem states: If (a,n)=1 then a) a ⁿ ≡1(mod n) b) a ^{φ(n)} ≡1(mod n) c) a ⁿ⁻¹ ≡1(mod n) d) None
 9. A subgroup H of G is normal if a) aH = Ha ∀ a∈G b) H = {e} c) Order of H divides order of G d) H is Abelian
10. The kernel of a homomorphism is always a) A subgroup b) A normal subgroup c) A cyclic group d) The identity only
 11 If φ: G→H is a group homomorphism, then a) φ(eG) = eH b) φ(eG) ≠ eH c) φ(eG) = 0 d) None of these
 12. The First Isomorphism Theorem states: a) G/H ≅ φ(G) where H=ker φ b) G≅H always c) G/H ≅G d) None of these
13. Every coset of a normal subgroup forms a) A subgroup b) A group under induced operation c) A field d) None of these
14. If a group homomorphism is bijective, then it is called a) Endomorphism b) Automorphism c) Isomorphism d) Homomorphism only
15. The quotient group G/H exists if and only if a) H is cyclic b) H is normal c) H is finite d) H is Abelian

Vivekanand College Kolhapur (Empowered Autonomous) **Department of Mathematics**

B.Sc. III (Sem V)

Abstract Algebra Surprise Test 2024-25

Time & date:

Total Marks: 30

Name of the student: Sujata Krishnat Bhogam

Roll no.: \$ 250

- 1. A group is called Abelian if
 - a) It is finite
 - b) It is commutative
 - c) It has an identity
 - d) It has an inverse
- 2. The set of integers under addition is
 - a) Finite group
 - b) Infinite Abelian group
 - c) Non-Abelian group
 - d) Not a group
- 3. In a group G, the identity element is
 - a) Unique
 - b) May not exist
 - c) Can be more than one
 - d) None of these
- 4. Which of the following is a cyclic group?
 - a) $(\mathbb{Z}, +)$
 - b) (Q, +)
 - c) $(\mathbb{R}, +)$
 - d) $(M_2(\mathbb{R}),+)$
- The order of a subgroup always
 - a) Divides the order of the group
 - b) Equals the order of the group
 - c) Is greater than the order of the group
 - d) May not relate to group order
- 6. The centre of a group Z(G) is defined as
 - a) Set of all inverses
 - b) Set of all commutative elements $\{x \in G: xg = gx \ \forall g \in G\}$
 - c) Set of all subgroups
 - d) None of these
 - The alternating group A_n consists of
 - a) All permutations of n elements
 - b) All odd permutations
 - c) All even permutations

d) All disjoint permutations

- 8. Euler's theorem states: If (a,n)=1 then
 - a) $a^n \equiv 1 \pmod{n}$
 - b) $a^{\phi(n)}$ ≡ 1 (mod n)
 - c) $a^{n-1} \equiv 1 \pmod{n}$
 - d) None
- 9. A subgroup H of G is normal if
 - a) $aH = Ha \forall a \in G$
 - b) $H = \{e\}$
 - c) Order of H divides order of G
 - d) H is Abelian
- 10. The kernel of a homomorphism is always
 - a) A subgroup
 - b) A normal subgroup
 - c) A cyclic group
 - d) The identity only
- 11. If ϕ : G \rightarrow H is a group homomorphism, then
 - a) $\phi(eG) = eH$
 - _b) φ(eG) ≠ eH
 - c) $\phi(eG) = 0$
 - d) None of these
- 12. The First Isomorphism Theorem states:
 - a) $G/H \cong \phi(G)$ where $H=\ker \phi$
 - b) G≅H always
 - c) G/H ≅G
 - d) None of these
- 13. Every coset of a normal subgroup forms
 - a) A subgroup
 - b) A group under induced operation
 - c) A field
 - d) None of these
- 14. If a group homomorphism is bijective, then it is called
 - a) Endomorphism
 - b) Automorphism
 - c) Isomorphism
 - d) Homomorphism only
- 15. The quotient group G/H exists if and only if
 - a) H is cyclic
 - b) H is normal
 - c) H is finite
 - d) H is Abelian

Vivekanand College Kolhapur (Empowered Autonomous)

Department of Mathematics

B.Sc. III (Sem V)

Abstract Algebra
Surprise Test 2024-25

Time & date:

Total Marks: 30

Name of the student: Aditya Ashok Azdalkaz Roll no.: 2200

- 1. A group is called Abelian if
 - a) It is finite
 - b) It is commutative
 - c) It has an identity
 - d) It has an inverse
- The set of integers under addition is
 - (a) Finite group
 - b) Infinite Abelian group
 - c) Non-Abelian group
 - d) Not a group
- 3. In a group G, the identity element is
 - (a) Unique
 - b) May not exist
 - c) Can be more than one
 - d) None of these
- 4. Which of the following is a cyclic group?

 - b) (Q, +)
 - $(\mathbb{R},+)$
 - d) $(M_2(\mathbb{R}),+)$
- The order of a subgroup always
 - a) Divides the order of the group
 - b) Equals the order of the group
 - c) Is greater than the order of the group
 - d) May not relate to group order
- 6. The centre of a group Z(G) is defined as
 - a) Set of all inverses
- Set of all commutative elements $\{x \in G: xg = gx \forall g \in G\}$
 - c) Set of all subgroups
 - d) None of these
- 7. The alternating group A_n consists of
 - a) All permutations of n elements
 - b) All odd permutations
 - a) All even permutations

d) All disjoint permutations

8. Euler's theorem states: If (a,n)=1 then

- a) $a^n \equiv 1 \pmod{n}$
- b) $a^{\phi(n)}$ ≡ 1 (mod n)
 - c) $a^{n-1} \equiv 1 \pmod{n}$
 - d) None
- 9. A subgroup H of G is normal if
 - a) $aH = Ha \forall a \in G$
 - b) $H = \{e\}$
 - Order of H divides order of G
 - d) H is Abelian
- 10. The kernel of a homomorphism is always
- (a) A subgroup
 - b) A normal subgroup
 - c) A cyclic group
 - d) The identity only
- 11 If \$\phi\$: G→H is a group homomorphism, then
 - $\a) \phi(eG) = eH$
 - b) $\phi(eG) \neq eH$
 - c) $\phi(eG) = 0$
 - d) None of these
- 12. The First Isomorphism Theorem states:
- $G/H \cong \phi(G)$ where H=ker ϕ
 - b) G≅H always
 - c) G/H ≅G
 - d) None of these
- 13. Every coset of a normal subgroup forms
 - A subgroup
 - b) A group under induced operation
 - c) A field
 - d) None of these
- 14. If a group homomorphism is bijective, then it is called
 - a) Endomorphism
 - b) Automorphism
 - (a) Isomorphism
 - d) Homomorphism only
- 15. The quotient group G/H exists if and only if
 - a) H is cyclic
 - b) H is normal
 - c) H is finite
 - d) H is Abelian