Estd. June 1964

"Education for Knowledge, Science and Culture." – Shikshanmaharshi Dr. Bapuji Salunkhe Shri. Swami Vivekanand Shikshan Sanstha's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

2130 E, Tarabai Park, Tal. Karveer, Dist. Kolhapur 416 003 UGC Recognition Under 2 F & 12(B) UGC Act 1956 Affiliated to Shivaji University, Kolhapur (M.S.) Ph.: 0231-2658612,2658840,Resi.: 0231-2653962 Fax:0231-2658840 Website :<u>www.vivekanandcollege.ac.in</u> E-mail : <u>info@vivekanandcollege.org</u>

Department of Chemistry

Course Outcomes (COs): Chemistry

M.Sc. Part II Inorganic Chemistry (Introduced in the year 2022-23)		
Semester III		
Inorganic Chemical Spectroscopy (CC – 2100C)		
CO No.	On completion of the course, student will be able to:	
CO1	Interpret the symmetry elements and their operations as required to	
	specifymolecular symmetry and possible point groups from	
	symmetry elements and be able to findpoint group of molecules by	
	systemic procedure.	
CO2	Explain the principle and instrumentation of infra-red (IR) and	
	Raman	
	spectroscopy and interpret infrared and raman spectra for chemical	
	analysis inorganic compounds.	
CO3	Explain the principle and instrumentation of Mass spectroscopy and	
	interpret Mass spectrum for chemical analysis of inorganic	
	compounds.	
CO4	Explain the principle and instrumentation of nuclear magnetic	
	resonance (NMR) and X-ray photoelectron spectroscopy (XPS) and	
	interpret the spectrum for chemical analysis of inorganic	
	compounds.	
Org	anometallic and Bioinorganic Chemistry (CC – 2101C)	
CO No.	On completion of the course, student will be able to:	
CO1	Explain methods of properties, preparation, stability and	
	applications of organometallic compounds in organic synthesis.	
CO2	Interpret structure and bonding transition metal pi-complexes and	
	their applications in organic synthesis relating to nucleophilic and	
	electrophilic attack on ligands.	
CO3	Get a basic understanding of medicinal use of metal complexes as	

	antibacterial, antiviral, antibiotics and related compounds.	
CO4	Understand transport and storage of dioxygen through different	
	carriers, study electron transfer in Biology involving metaloproteins	
	and cytochromes and role of metals in medicine.	
	Coordination Chemistry - I (CC – 2102C)	
CO No. On completion of the course, student will be able to:		
CO1	Know the fundamentals in photochemistry and explain different	
	types of photochemical reactions and photochemistry of	
	coordination compounds.	
CO2	Explain non-chelate forming and chelate forming reactions.	
CO3	Understand magnetic properties of complexes and explain w. r. t.	
	spin orbit coupling.	
CO4	Understand and explain mixed ligand complexes and use of	
	transition metal complexes in catalysis.	
	Material Science (CC – 2103C)	
CO No.	On completion of the course, student will be able to:	
CO1	Explain mechanism of superconductors, classify super conductors,	
	and explain BCS theory of superconductivity and know the	
	applications of different materials.	
CO2	Explain magnetic materials and their applications in different fields.	
CO3	Explore new areas of research in both ceramics and composite	
	materials manufacturing.	
CO4	Understand and apply core principles and concepts in catalysis	
	using different inorganic complexes as catalyst.	
	Nuclear Chemistry (CC – 2104C)	
CO No.	On completion of the course, student will be able to:	
CO1	Understand types of radioactive decay, natural decay series, nuclear	
	models, nuclear properties, Mass energy, relationships, nuclear	
	reactions, rates of radioactive decay, interaction of radiation with	
	matter.	
CO2	Explain nuclear structure and stability, define binding energy and	
	mass defect and able to calculate each for a given nucleus. Also	
	understand nuclear models to understand nuclear structure and	
	their properties.	
CO3	Identify and define various types of nuclear changes or processes	
	including fission, fusion and decay reactions, to understand nuclear	

	reactions and mechanism behind that.	
CO4	Understand the basics of nuclear chemistry applications: nuclear	
	power, nuclear reactor, medical treatment, isotopic labelling, and	
	carbon dating.	
	Semester IV	
Instrumental Techniques (CC - 2106D)		
CO No.	On completion of the course, student will be able to:	
CO1	Understand and use various crystallographic databases. Process	
	data, solve and interpret a single crystal structure. Apply the	
	concepts of unit cells and lattices to describe observed diffraction	
	patterns in reciprocal space.	
CO2	Acquire knowledge of Nuclear Quadrupole Resonance and X-ray	
	fluorescence Spectroscopy and apply to interpret data.	
CO3	Understand the principal, instrumentation and apply for structural	
	elucidation and investigation of compounds.	
CO4	Understand ESR measurements, acquire information about the	
	existence of unpaired electrons, as well as quantities, type, nature,	
	environment and behaviour and to interpret structure.	
	Coordination Chemistry-II (CC – 2107D)	
CO No.	On completion of the course, student will be able to:	
CO1	Explain lability and inertness of complexes and with respect to VBT	
	and CFT.	
CO2	Explain the kinetics and mechanism of substitution and electron	
	transfer reactions in octahedral and square planar complexes.	
CO3	Understand the classification of coordination polymers and learn	
	the chemical background of individual polymers.	
CO4	Know the applications of coordination compounds in industrial	
	processes.	
	Energy and Environmental Chemistry (CC - 2108D)	
CO No.	On completion of the course, student will be able to:	
CO1	Understand the basic building blocks of various forms of energy	
	and to know applications of fuel cells in various sectors, hydrogen	
	production, storage, handling and safety issues.	
CO2	Understand energy storage systems and describe the parts in	
	various Li-Ion Battery, materials and functionalities.	
CO3	Explain the common principles, routes and processes in controlling	

	the gaseous pollutants.	
CO4	Understand meaning of important parameters for measuring water	
	quality and understand the principles and the practical approaches	
	and technique required to effectively monitor the chemical,	
	hydrological and microbiological elements of water quality.	
Inorganic Nanomaterials (CC – 2109D)		
CO No.	On completion of the course, student will be able to:	
CO1	Understand synthesis approaches of nanomaterials and challenges	
	in Nano Technology.	
CO2	Describe different characterization techniques of	
	materials, outline the principles on which they are based,	
	and explain their limitations.	
CO3	Understand the technological application of nanomaterial is usable	
	in multiple sectors, from healthcare and mechanics to	
	environmental preservation and air purification.	
CO4	Acquire knowledge about the toxicity in Nanoscience, and their	
	effects on Human as well as learn various concepts of toxicity, and	
	its effects.	

Dr. (Mrs). S, D, Shirke HCAD DEPARTME OF OF OVEMISTRY VIVEKANAND ODLINGE KOLHAPUR (EMPOWERED AUSONOMOUS)