Estd. June 1964

"Education for Knowledge, Science and Culture." – Shikshanmaharshi Dr. Bapuji Salunkhe Shri. Swami Vivekanand Shikshan Sanstha's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

2130 E, Tarabai Park, Tal. Karveer, Dist. Kolhapur 416 003 UGC Recognition Under 2 F & 12(B) UGC Act 1956 Affiliated to Shivaji University, Kolhapur (M.S.) Ph.: 0231-2658612,2658840,Resi.: 0231-2653962 Fax:0231-2658840 Website :<u>www.vivekanandcollege.ac.in</u> E-mail : <u>info@vivekanandcollege.org</u>

Department of Chemistry

Course Outcomes (COs): Chemistry

M.Sc. Part II Analytical Chemistry (Introduced in the year 2023-24)			
	Semester III		
Advanced Analytical Techniques			
CO No.	On completion of the course, student will be able to:		
CO1	Learn mass spectrometry by outlining its principles, historical		
	context, compound-based classification, ionization techniques, and		
	diverse mass analyser comparisons.		
CO2	Understand the importance of nanomaterials and nanotechnology,		
	distinguish between diverse nanomaterial dimensions, elucidate		
	synthesis methods with examples, and evaluate application areas		
	across fields.		
CO3	Attain expertise in advanced microscopy techniques by		
	comprehending working principles, recognizing practical		
	applications, and distinguishing between methods based on		
	strengths and limitations.		
CO4	Gain comprehensive proficiency in a spectrum of spectroscopic		
	techniques, encompassing principles, instrumentation, data analysis		
	and practical applications.		
	Organo Analytical Chemistry		
CO No.	On completion of the course, student will be able to:		
CO1	Develop a profound grasp of UV-Visible, IR, 1H-NMR, ¹³ C NMR,		
	and Mass Spectrometry, encompassing fundamental principles,		
	advanced organic analysis, and the ability to solve intricate		
	structural determination challenges.		
CO2	Proficiently classify drugs, pinpoint potential impurity sources in		
	pharmaceutical raw materials, execute limit tests for Pb, As, Fe, and		
	utilize a range of analytical techniques, including UV, colorimetric,		

	and biological assays, for the comprehensive analysis of drugs and
	vitamins.
CO3	Gain a comprehensive knowledge of clinical analysis and enzyme assay techniques, showcase adeptness in collecting, preserving, and analysing physiological fluids, conduct estimations of key constituents in blood and urine samples, and effectively employ analytical methods for diagnosing diseases.
CO4	Engage in a comprehensive exploration of pesticide introduction, classification, and analysis, utilizing colorimetric and chromatographic techniques like GC-MS, HPLC-MS to examine pesticide residues, and the estimation of toxic substances such as lead, mercury, arsenic in biological samples for forensic applications. Electroanalytical Techniques in Chemical Analysis
CO No.	On completion of the course, student will be able to:
CO1	Develop a comprehensive comprehension of voltammetry principles, encompassing cyclic voltammetry, pulse voltammetry, and stripping voltammetry, for analyte determination and showcasing their real-world applications in analytical chemistry and research.
CO2	Understand the classification, properties, theories of charge origin, stability, factors influencing coagulation and spontaneous ageing of colloids, as well as differentiate types of emulsions, elucidating their preparation, properties, and demulsification methods.
CO3	Attain a thorough understanding of particle size analysis methodologies such as LASER light scattering, dynamic light scattering, and photosedimentation, including theoretical models like Mie theory and Fraunhofer diffraction theory and to apply diverse techniques like XRD, SEM, and TEM for real-world particle size measurements.
CO4	Explain different ion-selective electrode types, encompassing glass, solid-state, liquid-liquid membrane, enzyme, and gas electrodes, detailing their construction and applications.
	Environmental Chemical Analysis and Control
CO No. CO1	On completion of the course, student will be able to:
	Develop a comprehensive grasp of sampling theory, techniques, and criteria for gases, liquids, and solids; implement strategies to

	minimize variables during sampling and ensure efficient
	transmission and storage of collected samples.
CO2	Acquire expertise in performing comprehensive environmental
	analyses through a range of electrochemical techniques, including
	conductometry, potentiometry, cyclic voltammetry, amperometry,
	and coulometry, fluorescence spectrometry, inductively coupled
	plasma spectrometry, turbidimetry, and non-dispersive infrared
	analysis (NDIR) for diverse environmental applications.
CO3	Develop a comprehensive understanding of the chemistry, sources,
	characterization, and analysis methods for air pollutants, major
	minor components in potable and industrial water, conducting
	measurements for parameters including DO, COD, and BOD; and
	perform in-depth analyses of pollutants such as Pd, Cd, Hg, Cr, As
	in water, including quality assessments of organic and inorganic
	constituents in industrial wastewater.
CO4	Grasp the lifecycle of phenolic residues, including their sources,
	disposal, treatment, and analysis, with a focus on recovery methods
	from liquid effluents; adeptly conduct analysis of organomercurials,
	organochlorine pesticides, and volatile organic pollutants,
	employing suitable analytical methods.
	Semester IV
	Modern Separation Methods in Analysis
CO No.	On completion of the course, student will be able to:
CO1	Understand the advanced gas and liquid chromatographic
	techniques. They will be well-versed in the principles,
	instrumentation, working mechanisms.
CO2	Utilize hyphenated techniques, such as gas chromatography-mass
	spectrometry (GC-MS) and liquid chromatography-mass
	spectrometry (LC-MS), to enhance compound identification and
	quantification.
CO3	Apply their knowledge to practical scenarios and research projects.
	They will possess the skills to select appropriate chromatographic techniques based on the characteristics of analytes, separation
	requirements, and analytical objectives.
CO4	Grasp the modern extraction and separation techniques, including
	solid-phase extraction, solid-phase microextraction, sonic extraction,
	and accelerated solvent extraction.

CO No. CO1	On completion of the course, student will be able to:
CO1	
	Understand the various chemical analysis techniques used in the industrial context.
CO2	Perform quality control analyses and ensure compliance with regulations in various industries. They will be capable of analyzing
	raw materials, additives, and finished products to assess their composition, purity, and adherence to industry standards.
CO3	Understand the principles of various techniques such as chromatography, spectrophotometry, titration, and bomb calorimetry.
CO4	Develop problem-solving skills to address issues related to contamination, adulteration, impurity identification, and quality assurance.
	Advanced Methods in Chemical Analysis
CO No.	On completion of the course, student will be able to:
CO1	Understand the fluorescence and phosphorescence spectrophotometry. They will be able to explain the different types of luminescence, understand the theories behind fluorescence and phosphorescence, and discuss electronic transitions, solvatochromism, and solvation dynamics.
CO2	Adopt various kinetic methods of analysis. They will understand the theoretical basis behind kinetic techniques and be able to apply methods such as the Tangent Method, Fixed Time and Concentration Method, and Addition Method to determine the amount of substances in various samples.
CO3	Grasp the photoelectron spectroscopy and X-ray spectroscopy techniques. They will understand the basic principles of photoelectric effects, photoionization processes, Koopman's theorem, and the interpretation of photoelectron spectra.
CO4	Apply their knowledge of spectroscopic techniques to practical applications in analytical chemistry and research. They will understand how fluorescence sensing, synchronous spectra, and fluorescent nanomaterials can be utilized for specific analytical purposes.

Industrial Analytical Chemistry		
CO No.	On completion of the course, student will be able to:	
CO1	Apply the various spectrochemical methods used for analytical	
	purposes. They will understand the principles behind electronic	
	spectra and molecular structure, be familiar with near-infrared (NIR)	
	spectrometry for non-destructive testing, and comprehend the use of	
	FTIR spectrometry, fluorometry, and optical sensors	
CO2	Analyze metals and alloys. They will understand the composition	
	analysis of foundry materials, ferroalloys, special steels, and various	
	alloys like bronze, brass, Alnico, and Nichrome.	
CO3	Understand the soil fertility determination, analysis of inorganic	
	constituents in plant materials, and the chemical analysis as a	
	measure of soil fertility. Students will be able to analyze fertilizers	
	for their nutrient content and quality.	
CO4	Understand the analysis of explosive materials such as TNT, RDX,	
	lead azide, and EDNA. Additionally, students will be proficient in	
	analyzing conducting polymers, resins, rubber, luminescent paints,	
	lubricants, and adhesives, utilizing appropriate analytical techniques	
	and methods.	

Dr. (Mrs). S, D, Shirke HCAD DEPARTME - DE OVEMISTRY VIVEKANAND OULS AL FOLKAPUR (EMPOWERED AUSONOMOUS)