"Education for Knowledge, Science and Culture" -

- Dr Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Empowered Autonomous), Department of Biotechnology

Syllabus For

<u>Master of Science in Biotechnology Part – I</u>

(Semester I and II)

(Syllabus to be implemented from July, 2023 onwards as Per NEP 2020)

For M.Sc- Biotechnology Part - I

BIOTECHNOLOGY to be implemented from June2023

- 1. TITLE: Biotechnology
- 2. YEAR OF IMPLEMENTATION:- As per NEP 2020 Guidelines Syllabus will be implemented from June, 2023 onwards.

3. PREAMBLE:

This syllabus is framed to give sound knowledge with understanding of Biotechnology to Postgraduate students at first year of two years of M.Sc. degree course. Students learn Biotechnology as a separate subject from M.Sc. I. The goal of the syllabus is to make the study of Biotechnology popular, interesting and encouraging to the students for higher studies including research. The new and updated syllabus is based on a basic and applied approach with vigour and depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research. The syllabus is prepared after discussion at length with number of faculty members of the subject and experts from industries and research fields. The units of the syllabus are well defined, taking into consideration the level and capacity of students.

4. GENERAL OBJECTIVES OF THE COURSE / PAPER:

- 1) To make the students knowledgeable with respect to the subject and it's practicable Applicability.
- 2) To promote understanding of basic and advanced concepts in Biotechnology.
- 3) To expose the students to various emerging areas of Biotechnology.
- 4) To prepare students for further studies, helping in their bright career in the subject.
- 5) To expose the students to different processes used in industries and in research field.
- 6) To prepare the students to accept the challenges in life sciences.
- 7) To develop skills required in various industries, research labs and in the field of human health.

5. DURATION

The course shall be two year full time course.

6. PATTERN:-

Pattern of theory and Practical Examination will be Semester wise.

7. MEDIUM OF INSTRUCTION:

The medium of instruction shall be English.

3) OTHER FEATURES:

(A) LIBRARY:

Reference and Text Books, Journals and Periodicals, Reference Books. – List Attached

(B) LABORATORY SAFETY EQUIPMENT:

- 1) Fire extinguisher
- 2) First aid kit
- 3) Fumigation chamber
- 4) Stabilized power supply
- 5) Insulated wiring for electric supply.
- 6) Good valves & regulators for gas supply.
- 7) Operational manuals for instruments.
- 8) Emergency exits.

Teaching and Evaluation Scheme

M. Sc. I Biotechnology (Sem. I & II) From Academic Year: 2023 – 2024

Sr. No.	Course Abbr.	Course code	Course Name	Sch	ching eme s/week	Examination Scheme and Marks			Course Credits	
				TH	PR	CA	CIE	PR	Marks	
			Semeste	r-I					•	
1	DSC-I	DSC21MBT11	Biological Chemistry	4	-	80	20	-	100	4
2	DSC-II	DSC21MBT12	Microbial technology	4	-	80	20	_	100	4
3	DSE-I A	DSE21MBT11 DSE21MBT12	Environmental Biotechnology and Ecology Genetics and Basic Cell	4	-	80	20	-	100	4
	DSE-II B	DSE21MB112	Biology							
4	RMD-I	RMD21MBT11	Research Methodology	4	-	80	20	-	100	4
5	DSC-PR-I	DSC21MBT19	Techniques in Biological Chemistry and Microbial Technology	-	4		-	100	100	4
6	MIN-PR-II	MIN21MBT19	Techniques in Environmental Biotechnology and cell Biology	-	2		-	50	50	2
				16	06	320	80	150	550	22
			Semester	r-II						
1	DSC-III	DSC21MBT21	Molecular Biology	4	-	80	20	-	100	4
2	DSC-IV	DSC21MBT22	Enzyme Technology	4	-	80	20	-	100	4
3	DSE-II A	DSE21MBT21	Virology	4		90	20		100	4
	DSE-II B	DSE21MBT22	Immunology	4	-	80	20	-	100	4
4	DSC-PR-III	DSC21MBT29	Techniques in Molecular Biology and Enzyme Technology	-	4	-	-	100	100	4
5	MIN-PR-IV	MIN21MBT29	Techniques in Immunology and Virology	-	2	-	-	50	50	2
6	OJT-I	OJT21MBT21	On Job Training		04	ı	-	-	100	4
				12	10	240	60	150	550	22
		Total (Ser	m. I & II)	28	16	640	160	300	1100	44

Semester I Subject Code-DSC21MBT11 Riological chemistry (Credit 04)

	Subject Code-DSC21MBT11 Biological chemistry (Credit 04)			
Topic	Units	Lectures 60		
	Unit-I			
1	Chemical Basis of Life:- Chemical Basis of Life- Urey-Miller	10		
	Experiment, abiotic formation of amino acids, oligomers, Water- Properties			
	of Water, Ionization and hydrophobicity, emergent properties of			
	biomolecules in water.			
	Biological importance of water. Solvation properties of water.			
	Hydrophobic attraction of water, Concept of Biomolecules, Macromolecules			
	and their monomeric subunits.			
	Unit-II			
2	Carbohydrates: - Sterochemical relations of aldoses and ketoses. Ring	18		
	formation in monosaccharide. α and β anomers Biological importance of			
	Carbohydrates, classification with examples, monosaccharide, disaccharides-			
	Maltose, Lactose, Sucrose. Oligo saccharides, polysaccharides with specific			
	refrence to Starch, Glycogen. Cellulose, Concept of reducing and non reducing			
	sugars, Glycoconjugates - Glycoproteins, Glycolipids.			
	Metabolism of Carbohydrates: - Glycolysis, TCA cycle, Gluconeogenesis,			
	Glycogenesis, Glycolgenolysis (reactions, energetics, Significance regulation at Enzymatic, hormonal level), Oxidative phoshphorylation, components of			
	ETC, F_1 - F_0 ATP synthase Complex, Chemiosomotic hypothesis,			
	inhibitors/uncouples of ETC.			
	Unit-III			
3	Amino acids:-	18		
	Introduction Biological importance, classification based			
	in R group with examples, essential and non- essential amino			
	acids, Zwitter ion& I pH ,concept of pka, H-H equation , Peptide bond			
	formation Urea cycle.			
	Proteins:- Biological significance of Proteins, Protein classification based			
	on composition (Simple, Conjugate, Derived with examples), reactions of			
	protein sequencing Dansyl chloride, Dabsyl chloride, Sangers reagent,			
	Edman's reagent), Structural level organization of Proteins- Primary,			
	Ramchandran Plot, Secondary(Types- α -helix and β -pleated sheet), super			
	secondary motifs, forces stabilizing tertiary structure with reference to Mb,			
	Quaternary structure- Hemoglobin Structure of Ribozyme.			
	Unit IV			
4	Lipids- Biological importance of Lipids, Classification of Lipids –	14		
	Simple, compound, derived, Types of fatty acids, saturated			
	unsaturated at least 4 examples, types of waxes, Cholesterol, Lipoprotein-			
	LDL, VLDL, HDL, Chylomicrones, Liposomes, micelle formation, chemical			
	properties of lipids- Saponification value, Iodine value, Acid Value.			
	Metabolism of Lipids:- β - oxidation of fatty acid- palmitic acid, Biosynthesis			
	of fatty acid –palmitic acid, regulation of fatty acid metabolism.			

References:

- 1. Biochemistry text book by LubertStryer
- 2. Biochemistry and Molecular Biology of Plants
- 3. Buchannan B, Gruiseem W, Jones R, ASPP, Maryland; First Edition 2000
- 4. Plant Biochemistry Hans-Walter Heldt; 2006 Edition
- 5. Plant Biochemistry and Molecular Biology -Lea PJ, Leegood RC; Second Edition 1999John Wiley & Sons
- 6. Plant Physiology Taiz L and Zeiger E; Fourth Edition 2006, Sinauer Associates, INC

Subject Code: - DSC21MBT12 Microbiology (Credit 04)

Topic No.	Topics	Lectures 60
	Unit-I	
1	Beginning of Microbiology, milestones in the development of microbiology, spontaneous generation, Microbial Ecosystem, Microbial world, Branches of Microbiology, Application of microbiology. Microbial evolution and Taxonomy, systematics and taxonomy: Evolution of earth's earliest life forms, primitive organisms, their metabolic strategies and their molecular coding, New approaches to bacterial taxonomy, nomenclature, Bergey's manual, Ribotyping. Modern trends in Prokaryotic Taxonomy – Polyphasic, Polygenic, Numerical taxonomy.	15
	Unit-II	
2	Characteristics and Salient features of major groups of Bacteria Occurrence, shape and arrangement of bacterial cells, structure of bacterial cell – cell wall (Gram positive or Gram negative), capsule, plasma membrane, cytoplasm, ribosome, nucleoid, mesosomes, plasmids, flagella, pili (fimbriae), inclusion bodies, cell division and endospore formation. Characteristics of major groups of bacteria, Archaebacteria – general characteristics and classification; Eubacteria, Actinomycetes – general characteristics and classification, economic importance. Cyanobacteria – general characteristics and classification – ultra-structure, reproduction and economic importance. Mycoplasma, Rickettsia, Chlamydia, Photosynthetic bacteria and bioluminescent bacteria.	15
	Unit-III	
3	Microbial Growth Reproductive strategies, Bacterial Cell Cycle, Influence of environmental factors on growth, Microbial growth in Natural environmental, Laboratory culture of cellular Microbes, Growth curve, Measurement of Microbial population, Continuous culture of microorganism Unit IV	15
4	Microbial Ecology and Symbiosis	15
4	Methods in Microbial Ecology-Culturing techniques, Assessing Microbial diversity, Assessing Microbial Community Activity Microorganism in Marine and Freshwater Ecosystems-Water as microbial Habitat. Microorganism in Terrestrial Ecosystems- Soil as Microbial Habitat, Microbes- Plants Interaction The Subsurface Biosphere, Microbes in soil Environment. Microbial interaction Introduction, Mutualism- microorganism-insects mutualism, sulphide based mutualism, The rumen ecosystem. Co operation, Commensalism, predation, Parasitism, Ammensalism, Competition, Human Microbes interaction.	13

Reference

- 1. Microbiology-Pelzer, Chan, Krieg Tata McGraw Hill Publications
- 2. Microbiology-Concepts and applications by Paul A. Ketchum, Wiley
- 3. Fundamentals of Microbiology –Furbisher, Saunders & Toppan Publications
- 4. General Microbiology –C.B. Powar, H.F. Daginawala, Himalayan Publishing House
- 5. Medical Bacteriology, 14th edition, (1988), Dey, N.C and Dey, TK., Allied Agency, India
- 6. Prescott's Microbiology Ninth Edition.

Environmental Biotechnology and Ecology Subject Code- DSE21MBT11 (Credit 04)

Topic No.	Topics	Lectures 60
	Environmental Biotechnology	
	Unit –I	
1	Introduction to environment: pollution and its types;	15
	Air pollution and its control	
	Water pollution and its control	
	Soil pollution and its control	
	Environmental Toxicology	
	Definition, classification and concept, Pesticide Toxicity –	
	Classification(Organic and Inorganic), Mode of action of toxicants	
	(Metals, organophosphates, carbamates and mutagens),	
	Bioconcentration, Bioaccumulation, Biomagnifications,	
	Unit –II	
2	Bioremediation Techniques	15
	-Definition, Principle, Insitu and Exsitu Bioremediation,	
	Bioremediation of waste waters (MSW, BSW and ISW), Activated	
	Sludge Process, Lagoons, Oxidation ponds, Trickling filter.	
	Solid Waste Treatment [Plastics and Aromatics], Slurry Phase	
	Treatment,	
	Agricultural Bioremediation- Microbial Composting, Biogas,	
	Land Farming and pest Control,	
	Bioremediation of Industrial wastes, Xenobiotics,	
	Bioaugmentation and Biofiltration.	
	Ecology	
	Unit –I	
3	Ecosystem- Concept, structure, function.	15
	Productivity- Kinds of productivity.	
	Food chain- types of food chain, food web, concept of tropic	
	level,	
	Ecological pyramids- concepts and types.	
	Energy flow in ecosystem –concept of energy, unit of energy,	
	Biogeochemical cycle	
	Carbon cycle, Nitrogen cycle, Sulphur cycle, Phosphorus cycle	
	Concept - Habitat and Niche	
4	Population Ecology- Introduction, population characteristics,	15
	Natality, Mortality, survivor ship curves, age structure, age	
	pyramid.	
	Population growth- Exponential and logistic, r and k strategists.	
	Evolution :- Theories of evolution-Lamarckism, Darwinism,	
	Modern synthetic theory and Mutational theory. Evidences of	
	evolution and Adaptive radiation and Adaptive conversation.	
	Concept of species and speciation.	
	Hardy-Weinberg law and Equation.	

References: Environmental Biotechnology

- 1. Environmental Biotechnology by S. K. Agarwal
- 2. Biodegradation & Bioremediation (1999), Martin Alexander, Academic press.
- 3. General Microbiology, Stanier R. Y., Ingram J.L., Wheelis M.L., Painter R.R., McMillan Publications, 1989.
- 4. Foster C.F., John Ware D.A., Environmental Biotechnology, Ellis Horwood Ltd., 1987.
- 5. Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation, Advances in Applied Biotechnology Series, Vol.4, Gulf Publications Co. London, 1989.
- 6. Bioremediation engineering; design and application 1995 John. T. cookson, Jr. Mc Graw Hill, Inc.
- 7. Environmental Biotechnology by A.K. Chatterjee 8. Environmental Biotechnology by S.N.Jogdand Himalaya Publishing.

References: Ecology

- 1. Fundamentals of ecology; E.P Odum.
- 2. Concept of ecology; Dash.
- 3. Enviornmental Biology, Verma & Digram & Samp; Agarwal
- 4. Enviornmental Science., Saigo, Canninhham
- 5. General ecology., H.D.Kumar

(Credit=04) Subject Code:-DSE21MBT12 Genetics and Basic Cell Biology

Topic No.	Topics	Lectures 60
1,00	Genetics	
	Unit –I	
1	Genetics of bacteria and Bacteriophage Concept of a gene in pre-DNA era; mapping of genes in bacterial and phage chromosomes by classical genetic crosses; fine structure analysis of a gene; genetic complementation and other genetic crosses using phenotypic markers; phenotype to genotype connectivity prior to DNA-based understanding of gene. Genetics of Yeast Meiotic crosses, tetrad analyses, non-Mendelian and Mendelian ratios, gene conversion, models of genetic recombination, yeast mating type switch; dominant and recessive genes/mutations, suppressor or modifier screens, complementation groups,	15
	transposon mutagenesis, synthetic lethality, genetic epistasis Unit –II	
2	Genetics as a model of higher eukaryotes Monohybrid & dihybrid crosses, back-crosses, test-crosses, analyses of autosomal and sex linkages, screening of mutations based on phenotypes and mapping the same, hypomorphy, genetic mosaics, genetic epistasis in context of developmental mechanism. Population genetics Introduction to the elements of population genetics: genetic variation, genetic drift, neutral evolution; mutation selection, balancing selection, Fishers theorem. Plant genetics Laws of segregation in plant crosses, inbreeding, selfing, heterosis, maintenance of genetic purity, gene pyramiding. Basic Cell Biology Unit –I	15
3	Cell Structure – Discovery of Cell, Cell theory - Definition, discovery, three assumptions of cell theory, exceptions, organismal theory, protoplasm theory, Organization of Prokaryotic cell, Organization of Eukaryotic cell (plant and animal cell), Ultra structure & functions of cell organelles Mitochondria, Chloroplast, E.R., Golgi apparatus ,Lysosome, Peroxisome, Ribosomes. Cell membrane –components, Molecular models of cell membrane-Unit membrane model, Protein, crystal model, fluid mosaic model, Types of membrane transport, Passive transport-simple diffusion, facilitated diffusion, osmosis.	15
4	Nucleus -Introduction, morphology, occurrence, shape, size, number, position Ultra structure of nucleus-Nuclear membrane, nucleoplasm, nucleopore complex, nucleus.	15

Chromosome structure - introduction, General features of Prokarvotic chromosome. General features of Eukarvotic chromosome.

Cytoskeleton assembly - Introduction, Cytoskeleton elements, Microtubules- occurrence, structure, chemical composition, microtubule associated proteins, functions, Microfilamentsoccurrence, structure, chemical composition, functions, Intermediate filaments(IF) - occurrence, structure, chemical composition, types of IF, functions Organization of cilia and flagella

References: Genetics

- 1. Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and Analysis. Sudbury, MA: Jones and Bartlett.
- 2. Pierce, B. A. (2005). Genetics: a Conceptual Approach. New York: W.H. Freeman.
- 3. Tamarin, R. H., & Leavitt, R. W. (1991). Principles of Genetics. Dubuque, IA: Wm. C. Brown.
- 4. Smith, J. M. (1998). Evolutionary Genetics. Oxford: Oxford University Press.
- 5. Strickberger "Genetics"
- 6. Freifelder "Genetics"
- 7. Stanier "General Microbiology"
- 8. P. K. Gupta "Genetics"
- 9. C. Sarin "Genetics"
- 10. Larry Snyder Wendy Champness "Molecular Genetics of Bacteria"

References:- Basic Cell Biology

- 1) Molecular biology of cell-Albert
- 2) Molecular biology & cell biology Loddish etal
- 3) Cell biology –De Robertis
- 4) Cell biology-Genetics, molecular biology-P.S. Warma & Agarwal
- 5) Genes Lewin
- 6) Cell biology –Geral karp
- 7) Practical biochemistry Keith, Wilson and Walker
- 8) Cell Biology- C.B.Pawar

Subject Code: RMD14CHE11: Research Methodology in Biotechnology (Credit 04)

Topic	Topics	Lectures 60
No.		
	Unit –I	
1	 Fundamentals of Research Methodology Meaning, Objective, Motivation and Types of Research Research Approach Significance of Research, Research Methods, research and Scientific Methods Criteria of Good Research, Research Process and steps involved Hypothesis: Meaning, functions and types of hypothesis; Null/Alternative hypothesis Literature Survey, Source of information, Review Ethical issues and intellectual property rights. Publication Process, Selection of Journal, Citation index, Impact factor, H-index, Journal Cite score, Google scholar index, Research 	15
	gate, Academia, etc	
	Unit –II	
2	 Interpretation and Report Writing Meaning of Interpretation, Why Interpretation? Technique of interpretation, Precaution in Interpretation Significance of Report Writing, Different Steps in Writing Report, Layout of the Report, Types of Report. Mechanics Writing a research report: Writing preliminaries, Main body of research, reference and bibliography Precaution for Writing Research Reports Meaning and Importance of workshop, Seminar, Conference, Symposium etc in research Plagiarism-Concept and Significance of Plagiarism. Writing tools: Grammerly, Answer the public, Copyscape, Chatgpt, ginger. Referencing and citation tools: Endnote, Mendeley, Jabref, Zotero. 	15
2	Unit –III	45
3	 Research Methodology in Biotechnology Ultraviolet-visible absorption spectroscopy: Principle, Instrumentation and application. Fluorescence spectrophotometry: Principle, Instrumentation and application. Other types (IR, NMR, ESR and MASS) of spectrophotometry: Basic principle and application. Elimentary idea about X-ray crystallography, API- Electrospray and MALDI TOF. 	15

	 Chromatographic techniques: Principles of chromatography (Adsorption and Partition chromatography), Planar chromatography (Paper and Thin- layer chromatography), Column chromatography (Gas chromatography, Gel exclusion/permeation chromatography and FPLC, Ion-exchange chromatography, Affinity chromatography, HPLC). 	
	Unit –IV	
4	 Electrophoretic techniques: General principles, support media, electrophoresis of proteins (SDS-PAGE, native gels, gradient gels, isoelectric focusing gels and two dimensional gels), electrophoresis of nucleic acids (Agarose, pulse-field and sequencing gels). Radioisotope techniques: Nature of radioactivity, isotopes in biochemistry, measurement of radioactivity (carbon dating, Geiger-Muller counting and liquid scintillation counting), autoradiography. 	15

Reference Books:

- 1. Kumar R., Research Methodology A Step-By-Step Guide for Beginners, Pearson Education, Delhi (2006).
- 2. Montgomery, D. C., Design & Design & Experiments, 5th Ed., Wiley India (2007).
- 3. Kothari, C. R., Research Methodology-Methods and Techniques, 2nd Ed., New Age International, New Delhi.
- 4. Ram Ahuja, "Research Methods", (2001), Rawat Publications, New Delhi.
- 5. Cooper D., Schindler P., Business research methods", (2003) Tata Mc-Graw Hill, New Delhi

Practical Code- DSC21MBT19 Total 04 Credits Techniques in Biological Chemistry & Microbiology Technology

Techniques in Biological Chemistry 02 Credits			
Sr No.	Name of Practical	Туре	
1	Estimation of Total Flavonoid Content by AlCl₃ Method	Major	
2	Extraction of Fatty Acid from seed oil and determination of Acid, Sap and Iodine value.	Major	
3	Determination of Acid base titration curve and measurement of pKa value of Amino acid.	Major	
4	To prepare an Acetic-Na Acetate buffer and validate the Henderson-Hasselbalch equation.	Minor	
5	Estimation of Protein Bradford Method and Lowry's method using suitable standard Protein.	Minor	
6	Estimation of Total Sugar by Anthrone Method and Phenol H ₂ SO ₄ method using suitable standard sugar.	Minor	
	Techniques in Microbiology Technology 02 Credits		
1	Isolation of Symbiotic Nitrogen fixing bacteria from root nodules of leguminous plant.	Major	
2	Study of Growth curve of bacteria.	Major	
3	Isolation of E. Coli from sewage water sample with the help of EMB agar medium.	Major	
4	Test of Motility of bacteria by Hanging drop Technique and Agar Stabbing Method.	Minor	
5	Enrichment and Isolation of Antibiotic Producers	Minor	

Techniques in Environmental Biotechnology and Cell Biology 02 Credits			
Sr No.	Name of Practical	Туре	
1	Determination of BOD of Domestic Waste.	Major	
2	Determination of COD from industrial effluents sample	Major	
3	Determination of Total, Permanent and Temporary Hardness of water sample	Major	
4	Determination of MIC on commercial disinfectant	Minor	
5	Determination of TDS of sample water	Minor	
6	Isolation of Mitochondria	Major	
7	Isolation of Chloroplast	Major	
8	Isolation of Nucleus	Major	
9	Effect of temperature and pH on membrane permeability.	Minor	
10	Dialysis	Minor	

Semester II

Subject Code-DSC21MBT21

Molecular Biology (Credit 04)

Topic	Units	
, opic	• ·········	Lectures 60
	Unit-I	
1	Experimental Evidences for DNA as a genetic material:-	15
	Griffith's Exp., Avery, Macleod, McCarty Exp., Blender Exp., RNA As a	
	genetic material Gierer and Schram expt.	
	Properties and Function of DNA:-	
	Tm, Cot Curve, Purity of DNA, Acid- Base Nature, Buoyant Density Concept	
	of Gene, Unit of Gene (Cistron, Recon, and Muton), Fine Structure of gene,	
	One gene One Polypeptide Hypothesis, interrupted gene.	
	Organization of genome:-Viral (Lambda, T4), Bacteria (E. coli), Eukaryote,	
	Typical Structure of chromosome (Euchromatin & Heterochromatin), Packaging	
	of DNA (Nucleosome, Solenoid Model).	
	Unit-II	
2	Nucleic Acid biosynthesis:-	15
	De novo synthesis of Purine and Pyrimidine ring, Salvage Pathway,	
	Feedback inhibition.	
	DNA Replication- Semi conservative model of replication (M.S Expt.).	
	Direction of replication (Unidirectional and Bidirectional).	
	Prokaryotic and eukaryotic replication- Enzymes involved in replication,	
	initiation, elongation and termination. Rolling circle model and telomere	
	replication.	
	DNA Damage:- Mutation and its Types,	
	Chemical damage of DNA by: Base Analogue, 5 Bromo uracil, 2Amino purine,	
	Nitrous Acid, Nitrosoguanidine, Methly sulphonate, EMS, Intercalating Agent	
	(EtBr), DNA damage by UV Radation	
	DNA Repair: - Photo reactivation Repair of pyrimidine dimers, Direct repair,	
	Excision repair (Nucleotide and Base), Mismatch repair, SOS repair,	
	Recombination repair, Repair of double strand DNA break.	
	Unit-III	4-
3	Transcription in prokaryote and Eukaryote	15
	Mechanism of transcription-Enzyme involved, initiation, elongation and	
	termination. Inhibitors of transcription, Post transcriptional modification,	
	Transcriptional control by hormones.	
	Genetic Code	
	Properties of genetic code. Assignment of codons with Unknown	
	sequences a) Polyuridylic b) Acid Copolymers method.	
	Assignment of codons with known sequences a) Binding technique	
	b) Repetitive seq. technique.	
	Wobble Hypothesis, Variation in genetic code.	

	Unit IV	
4	Translation in prokaryote and Eukaryote	15
	Structure and role of ribosome in translation, Amino acid t-RNA complex	
	formation, Initiation, Elongation, termination of translation Inhibitors of	
	translation.	
	Post- translation modifications (Protein folding, Removal of Leader	
	sequences, Phosphorylation, Glycosylation).	
	Regulation of gene expression in prokaryote and eukaryote.	
	Regulation of gene expression in prokaryote a) Lac operon	
	b) Tryptophan operon c) Arabinose operon.	
	Regulation of gene expression at transcriptional and translation level.	

References:

- Molecular biology by Watson 1)
- 2) Genetics by Strickberger
- 3) Molecular Biology - Glickpastornack
- 4) Molecular biology - Geralad Carph
- 5) Gene by Levin
- 6) Genome by T.A. Brown
- 7) Molecular biology by Lodish
- 8) Biochemistry by Nelsdon and Cox
- 9) Biochemistry by Lubert Stryer

Subject Code: - DSC21MBT22 Enzyme Technology (Credit 04)

Topic No.	Topics	Lectures 60
	Unit-I	
1	General introduction and historical background, Definition, Properties of Enzymes Nomenclature and IUB classification of enzyme. Chemical nature of enzyme, Activation Energy and Transition state hypothesis, BiSubstrate reaction catalyzing enzymes, ,Coenzymes and cofactors, Prosthetic groups. Active site (Lock and Key and Induced fit hypothesis), Isozymes(Lactate dehydrogenase),Abzymes, Synzyme, Ribozymes	15
	Metallozymes, Metal activated enzymes- Examples Allosteric enzyme- properties and Sequential and Symmetry model of allosteric enzymeS- examples, Aspartate transcarbomylase ,Phosphofructokinase I	
	Unit-II	
2	Enzyme activity- factors affecting enzyme activity like Temperature, pH, Activator 2,Inhibitors, Substrate concentration and enzyme concentration. Units of enzyme activity	15
	Enzyme catalysis- Factors affecting enzyme catalysis like Proximity orientation, Strain and distortion ,Acid base catalysis- Explain with refrence to example Keto to Enol conversion tautomerism, RNase, Covalent catalysis- Explain with refrence to example Decarboxylation to Acetoacetate to Acetone via Schiff base formation, Chymotrypsin. Metal ion catalysis-Carbonic unhydrase	
	Enzyme kinetics- steady state kinetics, Michaelis – Menten equation, Significance of Km and Vmax. Concept of Turn over number Determination of Km by-1.Lineweaver Burk plot, 2. Eadie-Hofstee plot, 3. Hanes-Woolf plot, Eisenthal&Cornish plot	
	Unit-III	
3	Enzyme regulation Zymogen activation, Inhibition – Reversible inhibition Example and Kinetics of 1. Competitive inhibition, 2. Non-competitive 3. Un-competitive, Irreversible inhibition. Feedback inhibition, Allosteric inhibition- ATcase, Cholesterol esterasase	15
	Purification of enzyme- Introduction, Why isolate enzymes? Objectives and strategy in enzyme purification. Choice of sources, Methods of homogenization, methods of separation, Parameters to check success of purification procedure, Examples of purification procedure(RNA polymerase purification from <i>E.coli</i> and chymotrypsin)	

	Immobilization of enzyme- concept, Properties of immobilized enzyme, properties of matrix, Disadvantages of immobilization, methods of immobilization – Physical adsorption, Covalent bonding, Cross linking, encapsulation, entrapment. Applications of immobilized enzymes,	
	Unit IV	
4	Biosensors- Definition and Features of biosensor, Components of Biosensor Types of Biosensor-1. Clorimetric Biosensors 2. Potentiometric Biosensor example Glucose Biosensor 3. Amperometric Biosensor 4. Optical Biosensor 5. Pleizo – electric Biosensors 6. Immunosensors	15
	Application of Enzymes- Industrial enzymes – Thermophile enzymes amylases, lipases, Proteolytic enzymes. Clinical enzymes – enzymes as thrombolytic agent's anti-inflammatory agents. Streptokinase, Asparginase, Transaminases(AST,ALT), Cholinesterase, Phosphatase, Designer enzymes nature and use, Enzyme structure activity with respect to drug discoveries. Enzyme in Food Processing Industry	

Reference

- 1. Fundamentals of Enzymology-Nicholas Price and Lewis Steven
- 2. Enzyme- Palmer
- 3. Enzyme Dixon and Webb
- 4. Enzyme Technology- S. Shammugam and T. Satishkumar
- 5. Enzymes and Enzyme Technology- Anil kumar and Sarika Garg
- 6. Enzyme structure and Mechanism- Albnert Olson
- 7. Enzyme technology- Pandey Ashok et.al
- 8. Enzyme in Food technology- Mohamad Kuddus Springer

Subject Code- DSE21MBT21

Virology (Credit 04)

Topic No.	Topics	Lectures 60
	Unit –I	
1	History: History, origin and evolution of viruses, pioneers of Virology	15
	and properties of viruses. Nomenclature and classification of viruses:	
	Criteria used for naming and classification, Current ICTV classification of	
	viruses of bacteria, plants and animals and humans. Morphology and	
	properties of viruses: Physical- morphology and structure,	
	sedimentation, electrophoretic mobility, buoyant density; Biochemical-	
	chemical composition, nucleic acids, proteins, enzymes, lipids,	
	carbohydrates, polyamines, cations, virus stability; Biological- Host	
	range, inclusion bodies and transmission. Transmission of viruses: Non-	
	vector and vector mode of transmission of viruses.	
	Unit –II	
2	Laboratory Bio-safety: Principles of bio-safety, biosafety levels,	15
	containment facilities, maintenance and handling of laboratory animals	
	and requirements of virology laboratory. Isolation, cultivation and	
	maintenance of viruses: Isolation and cultivation of plant and animal	
	viruses (experimental plants and tissue culture, experimental animals,	
	embryonated eggs, organ cultures, primary and secondary cell cultures,	
	suspension and monolayer cell cultures, cell strains, cell lines).	
	Purification of viruses: Extraction of viruses from tissues, clarification,	
	and concentration of viruses in clarified extracts by physical and	
	chemical methods, further purification of viruses by rate zonal /	
	equilibrium density gradient centrifugation, Criteria of virus purity,	
	Quantitation and preservation of purified virus preparations.	
	Unit –III	
3	Assay of viruses: Infectivity assay methods (plaque, pock, end point,	15
	local / systemic assay of plant viruses), physical (EM), serological (HA,	
	HI, immunofluorescence, ELISA) and molecular (viral protein and	
	nucleic acid based) approaches. Replication: Introduction to virus	
	replication, steps involved in virus replication and general strategies.	
	Management of viruses: Cultural practices, Sanitation, control of	
	vectors, vaccines, antiviral drugs and chemotherapy	
	Unit –IV	
4	Bacteriophages: Biology of major RNA (MS2, Qβ) and DNA (T4, lambda,	15
	Øx174, M13) bacteriophages, replication of M13, T4 and lambda	
	phages; biology of cyanophages. Algal and fungal viruses: Biology of	
	viruses of Phycodnaviridae, Partitiviridae and Totiviridae. Biology of sub-	
	viral agents: Satellite viruses, sat-RNAs, DI particles, viroids, virusoids	
	and prions.	

References:

- 1. Evidence-Based Diagnosis: An Introduction to Clinical Epidemiology 2nd Edition, by Thomas B. Newman, Michael A. Kohn (2020).2 edition, Publisher: Cambridge University Press
- 2. Virusphere: From Common Colds to Ebola Epidemics--Why We Need the Viruses That Plague Us (2020). 1st edition, Frank Ryan (Author), Publisher: Prometheus.
- 3. Guide to Clinical and Diagnostic Virology (2019), (ASM Books) 1st Edition, by ReetiKhare, Publisher: ASM Press.
- 4. Virology (2019), P. Saravanan.
- 5. Recent Advances in Animal Virology (2019) 1st Edition, Kindle Edition, by Yashpal Singh Malik, Raj Kumar Singh, Mahendra Pal Yadav, 471 pages, Publisher: Springer
- 6. Virology (2017) Ren Warom, Titan Books.
- 7. Virus: An Illustrated Guide to 101 Incredible Microbes (2016), 1st Edition (ASM Books) Fourth Edition, by Marilyn J. Roossinck, Carl Zimmer, Publisher: Princeton University Press.
- 8. A Planet of Viruses: (2015) 2nd ed, by Carl Zimmer (2015) University of Chicago Press.
- 9. Schaechter's Mechanisms of Microbial Disease (2012). Fifth, North American Edition, by N. Cary Engleberg MD, Terence Dermody, Victor DiRitaPublisher: LWW; Fifth, North American edition
- 10. Introduction to Modern Virology. (2001). 5th ed. Dimmock et al., Blackwell Sci. Publ.
- 11. Plant Virology. (2001). 4th edi. By R. Hull. Academic Press.
- 12. Fundamental Virology, 4th ed. (2001). D.M. Knipe and P.M. Howley.
- 13. Principles of Virology: (2000). by S.J. Flint et al., ASM Press.
- 14. Basic Virology, (1999). By Waginer and Hewelett, Black Well Science Publ.
- 15. Veterinary Virology. 3rd ed. (1999). Murphy et al., Academic Press.
- 16. Principles of Molecular Virology. (1997). 2nded. A. Cann. Academic Press.
- 17. Medical Virology. (1994). 4th edition. D.O. White and F.J. Fenner. Academic Press. Plant Virology. (2001). 4thed. By R. Hull. Academic Press.
- 18. Field's Virology Vol 1 and 2. B.N. Fields, D.M. Knipe, P.M. Howley, R.M. Chanock, J.L.Melnick, T.P. Monath, B. Roizman, and S.E. Straus, eds.), (2007) 3rd Edition. Lippincott-Raven, Philadelphia, PA.
- 19. Principles of Molecular Virology. (1997). 2nded. A. Cann. Academic Press. 20. Virology: (1994). 3rded. Frankel Conrat et al, Prentice Hall.

Subject Code:- DSE21MBT22

Immunology (Credit=04)

Topic	Topics	Lectures 60
No.		
	Unit –I	
1	Immune system and Immune response: Innate and acquired immunity,	15
	structure and functions of immune cells- NK cells, Macrophages, B cells T	
	cells and subtypes, dendritic cells, neutrophils, basophils, eosinophils, and	
	mast cells. Humoral and cell mediated immunity-components and	
	significance. Organs of the immune system- Structural organization and	
	functions of primary and secondary lymphoid organs. Antigens and antibodies : Structure and properties of antigens- iso- and allo-	
	antigens, antigen specificity, haptens and adjuvants. Immunoglobulins-	
	Structure, properties, types and subtypes. Affinity and avidity, class	
	switching.	
	Generation of immunological diversity- antibodies and TCR.	
	Unit –II	
2	Antigen recognition and Response:	15
2	Activation & Maturation T cell receptor – structure and diversity.MHC – types,	
	structure, distribution, self- restriction. T and B cell activation. Maturation of	
	lymphocytes – positive and negative selection, process of maturation. Antigen	
	processing and presentation – cytosolic and endosomal pathways.T cell and NK cell	
	– mediated lysis of cells, ADCC. Complement system – components,	
	cascades. Cytokines – classification, properties and role as immunomodulators.	
	Unit –III	
3	Immunological tolerance- types and mechanisms. Role of T regulatory cells	15
	in immunological tolerance and prevention of autoimmunity	
	Hypersensitivity reactions : hypersensitivity reactions- types (I, II, III, and IV).	
	Autoimmunity: Autoimmune diseases- Systemic lupus erythematosus,	
	Multiple sclerosis, Myasthenia gravis, Rheumatoid arthritis	
	Treatment of autoimmune disorders.	
	Unit - IV	
4	Antigen-antibody interactions - Precipitation, agglutination and	15
	complement mediated immune reactions	
	Advanced immunological techniques: RIA, ELISA, Westernblotting,	
	ELISPOT assay, immune fluorescence microscopy, flow cytometry and	
	immunoelectron microscopy; surfaceplasmon resonance.	
	Vaccinology:- Active and passive immunization; live, killed, attenuated	
	vaccines, subunit vaccines; recombinant vector vaccine, DNA vaccines,	
	conjugate vaccines.	

References:

- 1. Basic and Clinical Immunology by Stites Daniel P., Stobo John D., Frudenberg H.H., Wells J.V.
- 2. Biotechnology Application and Research by P. N. Cheremisinoff and R. P. Ouellette
- 3. Essential Immunology by Roitt Ivan M.
- 4. Fundamentals of Immunology 2nd ed. by Myrrik Quentin N. and Weiser Russell S.
- 5. Immunobiotechnology by Mahadev Sharma and Nirmal Tripathi
- 6. Immunology by I Kannan
- 7. Immunology 3rd ed. by Roitt I. M., Brostoff J., Male D. K.
- 8. Immunology 5th ed. by R. A. Goldsby, T. J. Kindt, B. A. Osborne, J. Kuby
- 9. Immunology II by Bellanti Joseph A.
- 10. Medical Immunology 9th ed. by Daniel P. Stites, Abba I Terr, Tristram G. Parslow.
- 11. Kuby: Immunology; RA Goldsby, Thomas J. Kindt, Barbara A. Osborne.
- 12. Immunology by Roitt I. M., Brostoff J. and Male D. Gower medical publishing London.
- 13. Fundamentals of immunology 4th ed., Paul 1999, Lippencott Raven.

Practical DSC-PR-III - DSC21MBT29 **Total 04 Credits Techniques in Molecular Biology & Enzyme Technology**

Techniques in Molecular Biology 02 Credits			
Sr No.	Name of Practical	Туре	
1	Eukaryotic DNA Isolation from Plant Material.	Major	
2	Eukaryotic DNA isolation from Animal Material.	Major	
3	Purification of DNA by silica membrane (solution based).	Major	
4	Plasmid isolation from Bacteria.	Minor	
5	Isolation of RNA from plant.	Major	
6	SDS-PAGE for separation of protein using CCB.	Major	
7	Genomic DNA isolation from bacteria.	Minor	
8	Restriction digestion of DNA.	Minor	
9	Silica Gel Extraction by spin column method.	Minor	
10	Plasmid isolation by spin column method.	Minor	
1	Amylase Assay	Major	
1	Amylase Assay	Major	
2	Isolation of α-Amylase from Germinating Seed.	Major	
3	Study the effect of Substrate concentration on α-Amylase	Major	
4	Effect of Temperature on α-Amylase	Minor	
5	Effect of pH on α-Amylase	Minor	
6	Isolation of β-Amylase from Sweet potato	Major	
7	Effect of Activator on β-Amylase	Minor	
8	Effect of Inhibitor on β-Amylase	Minor	
9	Immobilization of Invertase	Minor	
10	Study the effect of substrate Concentration on Invertase	Major	
11	Purification of Protein/Enzyme By Ammonium Sulphate Precipitation	Minor	
12	Study of enzyme activity of Nitrate reductase from plant	Major	

Practical MIN-PR-IV Code: MIN21MBT29 Techniques in Immunology and Virology (02 Credits)

Techniques in Immunology				
Sr No.	Name of Practical	Type		
1	Serum separation from blood and salting out of IgG by ammonium sulphate fractionation.	Major		
2	RPR card test for syplilis,	Major		
3	Demonstration of agglutination reaction: Slide haemagglutination (Blood grouping).	Major		
4	Demonstration of precipitation reaction: Ouchterlony double diffusion, Single radial immunodiffusion.	Major		
5	Determination of antigen concentration by Rocket electrophoresis	Minor		
6	Enzyme linked immunosorbant assay (ELISA).	Minor		
7	Qualitative detection of Rheumatoid factor in human serum	Minor		
8	ASO test (For diagnosis of streptococcal infections)	Minor		
	Virology			
9	Demonstration of animal viruses' inoculation by chick embryo technique.	Minor		
10	Isolation of bacteriophages from water/sewage sample using double agar layer technique.	Major		
11	Enumeration of bacteriophages from water/sewage sample by plaque forming unit method. (PFU).	Major		
12	Total DNA extraction from virus infected plant,	Major		
13	Use of bioinformatics for viral genome analysis,	Minor		