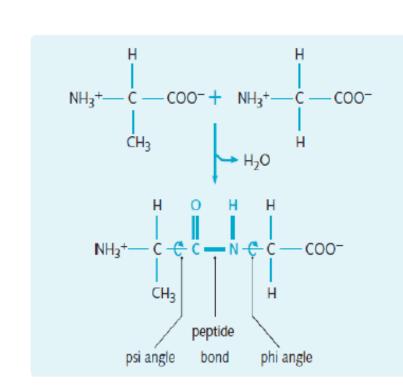


Cracking the Secret of Genetic Code

Biological Life Sciences
By Ashutosh Upadhye

DNA vs RNA Bases


- The nucleotide bases in nucleic acids contain nitrogen derived from either purines or pyrimidines.
- Purines (Double ring)
 - Adenine
 - Guanine
- Pyrimidines (Single ring)
 - Cytosine
 - Thymine*
 - Uracil*

AMINO ACIDS

- There are 20 naturally occurring amino acids, which differ in their side group.
- All amino acids, except glycine, have an asymmetrical α-carbon atom, giving rise to D or L stereoisomer forms; however, only the L form is found in humans.

 Amino acids form proteins by joining together through peptide bonds.

Amino acids code

Nonpolar and uncharged			
Α	Ala	Alanine	
F	Phe	Phenylalanine	
G	Gly	Glycine	
I	lle	Isoleucine	
L	Leu	Leucine	
M	Met	Methionine	
P	Pro	Proline	
V	Val	Valine	
W	Trp	Tryptophan	

Polar and uncharged				
С	Cys	Cysteine		
N	Asn	Asparagine		
Q	Gln	Glutamine		
S	Ser	Serine		
Т	Thr	Threonine		
Υ	Tyr	Tyrosine		

Positively	charged	(basic)

Н	His	Histidine
K	Lys	Lysine
R	Arg	Arginine

Negatively charged (acidic)

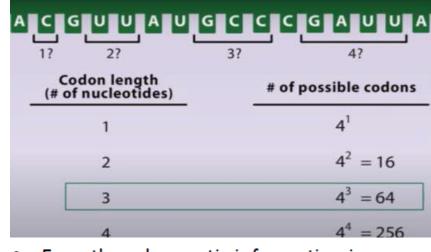
D	Asp	Aspartic acid
E	Glu	Glutamic aci

Ambiguous codes

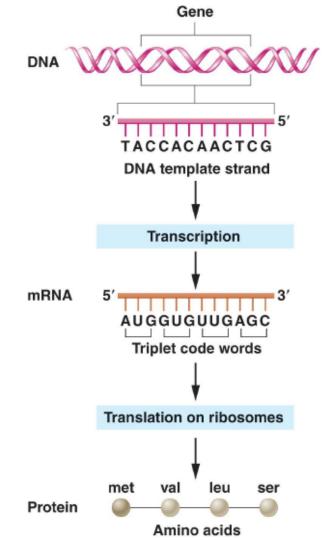
В	Asx	Asparagine or aspartic acid
Z	Glx	Glutamine or glutamic acid

Deciphering the Code

- Marshall Nirenberg and Heinrich Matthaei at the National Institutes of Health used a precise and logical series of experiments to "crack the code".
- They were among the first to characterize specific coding sequences.
- Made possible by advancements that:
 - * Allowed protein synthesis in vitro
 - * Synthesizing RNA strands in vitro



Deciphering the genetic code

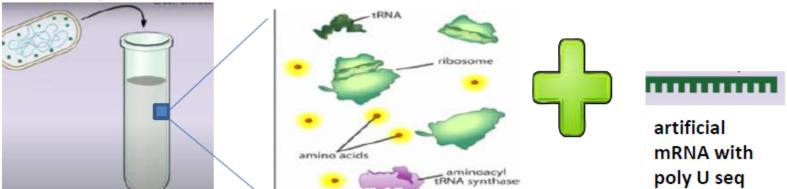

The genetic code is cracked by two different ways:

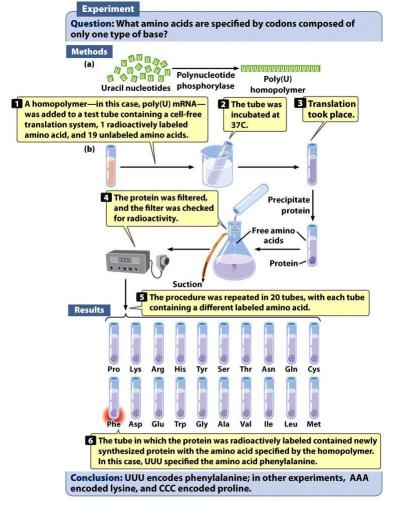
- ☐ Theoretical approach → triplet hypothesis
- practical approach

- Even though genetic information is stored in DNA, the code that is translated into proteins resides in RNA.
- How only four nucleotides could specify 20 the amino acids?

Evidence for the Triplet Code

- How Many RNA Bases Specify One amino acid code; 20 amino acids code?
- If a codon consisted of only one mRNA base?
- Two base, for example, provides only 16 unique code words (42). Not enough..!
- A triplet code yields 64 words (43) and therefore is sufficient for the 20 amino acids.
- A four-letter code (44), which would specify 256 words.




Practical approach

 The cracking of the genetic code began in 1961, with work from the American biochemist <u>Marshall Nirenberg</u> and his post-doctoral fellow, <u>J. Heinrich Matthaei</u> at the <u>National Institutes of Health</u> (NIH)

Their success relied on two experimental innovations:

- A way to make artificial mRNA molecules with specific, known sequences.
- A system to translate mRNAs into polypeptides outside of a cell (a "cell-free" system). Nirenberg's system consisted of cytoplasm from burst E. coli cells, which contains all of the materials needed for translation.

Marshall Nirenberg and Heinrich Matthaei experiments

- Synthesized simple mRNA molecules were added to test tubes that contained all the chemicals and structures needed for translation, extracted from E. coli.
- The 1st synthetic mRNA they made had the sequence UUUUUU.... Result: Peptides of phenylalanine.
- Conclusion: The codon UUU specifies the amino acid phenylalanine

Marshall Nirenberg and Heinrich Matthaei experiments

- The 2[™] experiments AAAAAA..... Result: Peptide of lysine
- The 3rd experiments CCCCCC.... Result: Peptide for Proline.
- GGGGGG.... was unstable, so this part of the experiment could not be done.
- Next to prove other codon-amino acid pairs hence researchers synthesized chains of alternating bases

Marshall Nirenberg and Heinrich Matthaei experiments

- Synthetic mRNA of sequence AUAUAU...
 introduced codons AUA and UAU alternating
 Isoleucines and Tyrosines, but which one is which?
- Another experiment with a more complex sequence answered the question.
- The mRNA UUUAUAUUUAUA, UUU codes for phenylalanine, AUA code for isoleucine.
- Hence if AUA codes for isoleucine, then UAU must code for tyrosine... right?

The code is unambiguous

- Sixty of the possible 64 codons specify particular amino acids
- Three indicate "stop," and one encodes both the amino acid methionine and "start."
- This means that some amino acids are specified by more than one codon.
- For example, both UUU and UUC encode phenylalanine.

- By 1965, using the cell-free system and other techniques, Nirenberg,
 Khorana, and their colleagues had deciphered the entire genetic code.
- It was found that all the 64 triplets codons
- The remaining three codons do not code for any amino acid They are called nonsense codons /stop codons
- The nonsense codons also have a function They act as stop signals (chain termination signals)
- Nirenberg and Khorana (along with another genetic code researcher, Robert Holley) received the Nobel Prize in 1968.

The Genetic code

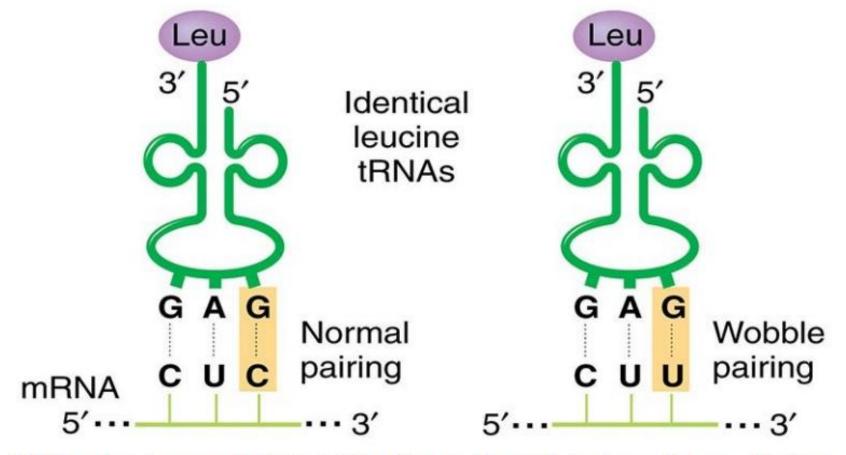
Second Letter

		U	С	А	G	
1st letter	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	С	CUU CUC CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC Gin CAG	CGU CGC CGA CGG	U C A G
	A	AUU IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA AGA Arg	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA Glu GAG	GGU GGC GGA GGG	U C A G

The Genetic code

- Almost all amino acids are specified by two, three, or four different codons.
- Three amino acids (arginine, serine, and leucine) are specified by six codons.
- Methionine and tryptophan are encoded by single codons.
- In many codons specifying the same amino acid (synonymous codons), the first two positions are the same but the third position differs (Proline); degenerate

Wobble hypothesis


- Crick postulated the wobble hypothesis.
- He predicted that the initial two ribonucleotides of triplet codes are often more critical than the third member in attracting the correct tRNA.
- He hypothesized that hydrogen bonding at the third position of the codon-anticodon interaction would be less spatially constrained.
- In addition, it may also need not to adhere strictly to the base-pairing rules.

Wobble hypothesis

- 61 different tRNAs could theoretically exist, one for each codon that specifies an amino acid, however only 49 different genes encode tRNAs.
- This is because the same type of tRNA can detect synonymous codons that differ only in whether the wobble (third) position is U or C.
- The same type of tRNA, for example, binds to both UUU and UUC codons, which specify the amino acid phenylalanine.
- Synonymous codons ending in A or G use different tRNAs

Crick's hypothesis hence predicts that the initial two ribonucleotides of triplet codes are often more critical than the third member in attracting the correct tRNA.

Wobble base pairs tRNA anticodon loop Anticodon Wobble position 3 C C/U **mRNA** 5 Codon

Thank You For Watching If you like the Video please press like button Share, Comment and Subscribe

