
Unit II

Constants, Variables and Data Types: Constants ,Variables ,Data Types, Declaration of variables,

Giving values to variables, Symbolic Constants, Typecasting.

Operators & Expression: Arithmetic operators, Relational operators, Logical operators, Assignment

operators, Increment & Decrement operators, Conditional operators, Bitwise operators, Arithmetic

Expressions, Evaluation of Expression, Operator Presentence & Associativity.

Decision Making, Branching & Looping: Decision Making with control statements, Looping

statements, Jump in Loop

Data Types in Java

Java is statically typed and also a strongly typed language because, in Java, each type of data (such as

integer, character, hexadecimal, packed decimal, and so forth) is predefined as part of the programming

language and all constants or variables defined for a given program must be described with one of the

Java data types.

Data types specify the different sizes and values that can be stored in the variable. There are two types

of data types in Java:

Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float and

double.

Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data manipulation. These are the most

basic data types available in Java language.

In Java, there are mainly eight primitive data types and let's understand about them in detail.

Java Primitive data types:

boolean data type

byte data type

char data type

short data type

int data type

long data type

float data type

double data type

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Boolean Data Type

In Java, the boolean data type represents a single bit of information with two possible

states: true or false. It is used to store the result of logical expressions or conditions. Unlike other

primitive data types like int or double, boolean does not have a specific size or range. It is typically

implemented as a single bit, although the exact implementation may vary across platforms.

Example

boolean a=false;

boolean b=true;

System.out.println("a= " + a);

System.out.println("b= " + b);

Byte Data Type

The byte data type in Java is a primitive data type that represents an 8-bit signed two's complement

integer. It has a range of values from -128 to 127. Its default value is 0. The byte data type is commonly

used when working with raw binary data or when memory conservation is a concern, as it occupies less

memory than larger integer types like int or long.

Example

byte a=10;

byte b=-20;

System.out.println("a= " + a);

System.out.println("b= " + b);

Short Data Type

The short data type in Java is a primitive data type that represents a 16-bit signed two's complement

integer. It has a range of values from -32,768 to 32,767. Similar to the byte data type, short is used when

memory conservation is a concern, but more precision than byte is required. Its default value is 0.

Example

short a=10000;

short b=-5000;

System.out.println("a= " + a);

System.out.println("b= " + b);

Int Data Type

The int data type in Java is a primitive data type that represents a 32-bit signed two's complement integer. It

has a range of values from -2,147,483,648 to 2,147,483,647. The int data type is one of the most commonly

used data types in Java and is typically used to store whole numbers without decimal points. Its default

value is 0.

Example

int a=100000;

int b=-200000;

System.out.println("a= " + a);

System.out.println("b= " + b);

Long Data Type

The long data type in Java is a primitive data type that represents a 64-bit signed two's complement

integer. It has a wider range of values than int, ranging from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807. Its default value is 0.0F. The long data type is used when int is not large

enough to hold the desired value, or when a larger range of integer values is needed.

Example

long a = 5000000L;

long b = -6000000L;

System.out.println("a= " + a);

System.out.println("b= " + b);

Float Data Type

The float data type in Java is a primitive data type that represents single-precision 32-bit IEEE 754

floating-point numbers. It can represent a wide range of decimal values, but it is not suitable for precise

values such as currency. The float data type is useful for applications where a higher range of values is

needed, and precision is not critical.

Example

float f = 234.5f;

System.out.println("f = " + f);

Double Data Type

The double data type in Java is a primitive data type that represents double-precision 64-bit IEEE 754

floating-point numbers. Its default value is 0.0d. It provides a wider range of values and greater precision

compared to the float data type, making it suitable for applications where accurate representation of

decimal values is required.

Example

double d = 12.3;

System.out.println("d = " + d);

Char Data Type

The char data type in Java is a primitive data type that represents a single 16-bit Unicode character. It can

store any character from the Unicode character set, that allows Java to support internationalization and

representation of characters from various languages and writing systems.

Example

char c = 'A';

System.out.println("c = " + c);

Non-Primitive Data Types in Java

In Java, non-primitive data types, also known as reference data types, are used to store complex objects

rather than simple values. Unlike primitive data types that store the actual values, reference data types store

references or memory addresses that point to the location of the object in memory. This distinction is

important because it affects how these data types are stored, passed, and manipulated in Java programs.

Class

One common non-primitive data type in Java is the class. Classes are used to create objects, which are

instances of the class. A class defines the properties and behaviors of objects, including variables (fields)

and methods. For example, you might create a Person class to represent a person, with variables for the

person's name, age, and address, and methods to set and get these values.

Interface

Interfaces are another important non-primitive data type in Java. An interface defines a contract for what a

class implementing the interface must provide, without specifying how it should be implemented.

Interfaces are used to achieve abstraction and multiple inheritance in Java, allowing classes to be more

flexible and reusable.

Arrays

Arrays are a fundamental non-primitive data type in Java that allow you to store multiple values of the

same type in a single variable. Arrays have a fixed size, which is specified when the array is created, and

can be accessed using an index. Arrays are commonly used to store lists of values or to represent matrices

and other multi-dimensional data structures.

Enum

Java also includes other non-primitive data types, such as enums and collections. Enums are used to

define a set of named constants, providing a way to represent a fixed set of values. Collections are a

framework of classes and interfaces that provide dynamic data structures such as lists, sets, and maps,

which can grow or shrink in size as needed.

Overall, non-primitive data types in Java are essential for creating complex and flexible programs. They

allow you to create and manipulate objects, define relationships between objects, and represent complex

data structures. By understanding how to use non-primitive data types effectively, you can write more

efficient and maintainable Java code.

Variables

A variable is a container which holds the value while the Java program is executed. A variable is

assigned with a data type.

Variable is a name of memory location. There are three types of variables in java: local, instance and

static.

A variable is the name of a reserved area allocated in memory. In other words, it is a name of the

memory location. It is a combination of "vary + able" which means its value can be changed.

int data=50;//Here data is variable

How to Declare Java Variables?

We can declare variables in Java as pictorially depicted below:

datatype: In Java, a data type define the type of data that a variable can hold.

data_name: Name was given to the variable.

In this way, a name can only be given to a memory location. It can be assigned values in two ways:

Variable Initialization

Assigning value by taking input

https://www.tpointtech.com/simple-program-of-java

How to Initialize Java Variables?

It can be perceived with the help of 3 components explained above:

Types of Variables

There are three types of variables in Java:

• local variable

• instance variable

• static variable

1)Local Variable

A variable declared inside the body of the method is called local variable. You can use this variable only

within that method and the other methods in the class aren't even aware that the variable exists.

A local variable cannot be defined with "static" keyword.

Example

//defining a Local Variable

int num = 10;

System.out.println(" Variable: " + num);

Output:

Variable: 10

2) Instance Variable

A variable declared inside the class but outside the body of the method, is called an instance variable. It is

not declared as static.

It is called an instance variable because its value is instance-specific and is not shared among instances.

public class InstanceVariableDemo {

 //Defining Instance Variables

 public String name;

 public int age=19;

 //Creadting a default Constructor initializing Instance Variable

 public InstanceVariableDemo()

 {

 this.name = "Deepak";

 }

}

public class Main{

 public static void main(String[] args)

 {

 // Object Creation

 InstanceVariableDemo obj = new InstanceVariableDemo();

 System.out.println("Student Name is: " + obj.name);

 System.out.println("Age: "+ obj.age);

 }

}

Output:

Student Name is: Deepak

Age: 19

https://www.tpointtech.com/static-keyword-in-java

3) Static variable

A variable that is declared as static is called a static variable. It cannot be local. You can create a single

copy of the static variable and share it among all the instances of the class. Memory allocation for static

variables happens only once when the class is loaded in the memory.

class Student{

 //static variable

 static int age;

}

public class Main{

 public static void main(String args[]){

 Student s1 = new Student();

 Student s2 = new Student();

 s1.age = 24;

 s2.age = 21;

 Student.age = 23;

 System.out.println("S1\'s age is: " + s1.age);

 System.out.println("S2\'s age is: " + s2.age);

 }

}

Output:

S1's age is: 23

S2's age is: 23

Constant

A constant is an entity in programming that is immutable. In other words, the value that cannot be

changed. Usually, to accomplish this, the variable is declared using the final keyword. Constants are

frequently used to represent stable values, like mathematical constants, configuration settings, or flag

values, that do not change while a program is running. A variable's value is guaranteed to stay constant and

unintentionally changed if it is declared as a constant.

Constant is a value that cannot be changed after assigning it. Java does not directly support the constants.

There is an alternative way to define the constants in Java by using the non-access modifiers static and

final.

How to declare constant in Java?

In Java, to declare any variable as constant, we use static and final modifiers. It is also known as non-

access modifiers. According to the Java naming convention the identifier name must be in capital letters.

Static and Final Modifiers

The purpose to use the static modifier is to manage the memory.

It also allows the variable to be available without loading any instance of the class in which it is defined.

The final modifier represents that the value of the variable cannot be changed. It also makes the primitive

data type immutable or unchangeable.

The syntax to declare a constant is as follows:

static final datatype identifier_name=value;

For example, price is a variable that we want to make constant.

static final double PRICE=432.78;

Where static and final are the non-access modifiers. The double is the data type and PRICE is the

identifier name in which the value 432.78 is assigned.

In the above statement, the static modifier causes the variable to be available without an instance of its

defining class being loaded and the final modifier makes the variable fixed.

Here a question arises that why we use both static and final modifiers to declare a constant?

If we declare a variable as static, all the objects of the class (in which constant is defined) will be able to

access the variable and can be changed its value. To overcome this problem, we use the final modifier

with a static modifier.

When the variable defined as final, the multiple instances of the same constant value will be created for

every different object which is not desirable.

When we use static and final modifiers together, the variable remains static and can be initialized once.

Therefore, to declare a variable as constant, we use both static and final modifiers. It shares a common

memory location for all objects of its containing class.

Why we use constants?

The use of constants in programming makes the program easy and understandable which can be easily

understood by others. It also affects the performance because a constant variable is cached by both JVM

and the application.

Points to Remember:

 Write the identifier name in capital letters that we want to declare as constant. For example, MAX=12.

 If we use the private access-specifier before the constant name, the value of the constant cannot be

changed in that particular class.

 If we use the public access-specifier before the constant name, the value of the constant can be

changed in the program.

Tokens

The Java compiler breaks the line of code into text (words) is called Java tokens. These are the smallest

element of the Java program. The Java compiler identified these words as tokens. These tokens are

separated by the delimiters. It is useful for compilers to detect errors. Remember that the delimiters are not

part of the Java tokens.

token <= identifier | keyword | operator | comment

For example, consider the following code.

 public class Demo

{

public static void main(String args[])

{

System.out.println("javatpoint");

}

}

In the above code snippet, public, class, Demo, {, static, void, main, (, String, args, [,],), System, ., out,

println, javatpoint, etc. are the Java tokens.

The Java compiler translates these tokens into Java bytecode. Further, these bytecodes are executed inside

the interpreted Java environment.

Types of Tokens

Java token includes the following:

 Keywords

 Identifiers

 Operators

 Comments

Keywords: These are the pre-defined reserved words of any programming language. Each keyword has a

special meaning. It is always written in lower case. Since keywords are referred names for a compiler, they

can‟t be used as variable names because by doing so, we are trying to assign a new meaning to the keyword

which is not allowed. Java provides the following keywords:

 01. abstract 02. boolean 03. byte 04. break 05. class

06. case 07. catch 08. char 09. continue 10. default

11. do 12. double 13. else 14. extends 15. final

16. finally 17. float 18. for 19. if 20. implements

21. import 22. instanceof 23. int 24. interface 25. long

26. native 27. new 28. package 29. private 30. protected

31. public 32. return 33. short 34. static 35. super

36. switch 37. synchronized 38. this 39. thro 40. throws

41. transient 42. try 43. void 44. volatile 45. while

46. assert 47. const 48. enum 49. goto 50. strictfp

2.Identifiers

Identifiers are used as the general terminology for naming of variables, functions and arrays. These are

user-defined names consisting of an arbitrarily long sequence of letters and digits with either a letter or the

underscore (_) as a first character. Identifier names must differ in spelling and case from any keywords.

You cannot use keywords as identifiers; they are reserved for special use. Once declared, you can use the

identifier in later program statements to refer to the associated value. A special kind of identifier, called a

statement label, can be used in goto statements

There are some rules to declare identifiers are:

 The first letter of an identifier must be a letter, underscore or a dollar sign. It cannot start with digits but

may contain digits.

 The whitespace cannot be included in the identifier.

 Identifiers are case sensitive.

Some valid identifiers are:

 PhoneNumber

PRICE

radius

a

a1

_phonenumber

$circumference

jagged_array

12radius //invalid

3. Operators

Java supports a rich set of operators. We have already used several of them, such as =,

+, –, and *. An operator is a symbol that tells the computer to perform certain mathematical or

logical manipulations. Operators are used in programs to manipulate data and variables. They

usually form a part of mathematical or logical expressions

Java operators can be classified into a number of related categories as below:

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

1.Arithmetic operators

Arithmetic operators are used to construct mathematical expressions as in algebra. Java

provides all the basic arithmetic operators. The operators +, –, *,

and / all works the same way as they do in other languages. These can on any built-in numeric

data type of Java. We cannot use these operators on Boolean type. The unary minus operator,

in effect, multiplies its single operand by –1. Therefore, a number preceded by a minus sign

changes its sign.

Here a and b may be variables or constants and are known as operands.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a + b are integers, the

expression is called an integer expression, and the operation is called integer arithmetic. Integer

arithmetic always yields an integer value. In the above examples, if a and b are integers, then

for a = 14 and b = 4 we have the following results:

a/b, when a and b are integer types, gives the result of division of a by b after truncating the

divisor. This operation is called the integer division.

For modulo division, the sign of the result is always the sign of the first operand (the

dividend). That is

(Note that module division is defined as : a%b = a – (a/b)*b, where a/b is the integer division).

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real

operand may assume values either in decimal or exponential notation. Since floating point

values are rounded to the number of significant digits permissible, the final value is an

approximation of the correct result.

Unlike C and C++, modulus operator % can be applied to the floating point data as

well. The floating point modulus operator returns the floating point equivalent of an integer

division. What this means is that the division is carried out with both floating point operands,

but the resulting divisor is treated as an integer, resulting in a floating point remainder. Program

The output of Program is as follows:

a = 20.5

b = 6.4

a+b = 26.9

a–b = 14.1

a*b = 131.2

a/b = 3.20313

a%b = 1.3

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a

mixed-mode arithmetic expression. If either operand is of the real type, then the other operand

is converted to real and the ral arithmetic is performed. The result will be a real. Thus

15/10.0 produces the result 1.5

Whereas

15/10 produces the result 1

2. Relational Operators

We often compare two quantities, and depending on their relation, take certain

decisions. Relational expressions are used in decision statements such as, if and while to decide the

course of action of a running program. For example, we may compare the age of two persons, or the

price of two items, and

so on. These comparisons can be done with the help of relational operators. We have already

used the symbol „<‟ meaning „less than‟. An expression such as

a < b or x < 20

containing a relational operator is termed as a relational expression. The value of relational

expression is either true or false. For example, if x = 10, then

x < 20 is true

while

20 < x is false.

Java supports six relational operators in all. These operators and their meanings are

Relational Operators

Expression

class RelationalOperators

{

public static void main(String args[])

{

float a = 15.0F, b = 20.75F, c = 15.0F;

System.out.println(“ a = ” + a);

System.out.println(“ b = ” + b);

System.out.println(“ c = ” + c);

System.out.println(“ a < b is ” + (a<b));

System.out.println(“ a > b is ” + (a>b));

System.out.println(“ a == c is ” + (a==c));

System.out.println(“ a <= c is ” + (a<=c));

System.out.println(“ a >= b is ” + (a>=b));

System.out.println(“ b != c is ” + (b!=c));

System.out.println(“ b == a+c is ” + (b==a+c));

}

}

Otuput

a = 15

b = 20.75

c = 15

a < b is true

a > b is false

a == c is true

a <= c is true

a >= b is false

a != c is true

b == a+c is false

3. Logical Operators

In addition to the relational operators, Java has three logical operators, which are given

in

The logical operators && and | | are used when we want to form compound conditions

by combining two or more relations. An example is:

a > b && x == 10

An expression of this kind which combines two or more relational expressions is termed

as a logical expression or a compound relational expression.

Note:

 op – 1 && op – 2 is true if both op – 1 and op – 2 are true and false otherwise.

 op – 1 | | op – 2 is false if both op – 1 and op – 2 are false and true otherwise.

Some examples of the usage of logical expression are:

1. if (age>55 && salary<1000)

2. if (number<0) || number>1000)

4. Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. We

have seen the usual assignment operator, „=‟. In addition, Java has a set of „shorthand‟

assignment operators which are used in the form

v op= exp;

where v is a variable, exp is an expression and op is a Java binary operatory. The operator

op = is known as the shorthand assignment operator.

5. Increment and Decrement Operators

Java has two very useful operators not generally found in many other languages. These

are the increment and decrement operators.

++ and ––

The operator ++ adds 1 to the operand while –– subtracts 1. Both are unary operators

and are used in the following form:

++m; or m++;

––m; or m––;

++m; is equivalent to m = m + 1; (or m += 1;)

––m; is equivalent to m = m – 1; (or m –= 1;)

We use the increment and decrement operators extensively in for and while loops.

While ++m and m++ mean the same thing when they from statements independently,

they behave differently when they are used in expressions on the right-hand side of an

assignment statement. Consider the following:

m = 5;

y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statement as

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand

and then the result is assigned to the variable on left. On the other hand, a postfix operator first

assigns the value to the variable on left and then increments the operand

class IncrementOperator

{

public static void main(String args[])

{

int m = 10, n = 20

System.out.println(“ m = ” + m);

System.out.println(“ n = ” + n);

System.out.println(“ ++m = ” +++m n);

System.out.println(“ n++ = ” + n++);

System.out.println(“ m = ” + m);

System.out.println(“ n = ” + n);

}

}

Output

m = 10

n = 20

++m = 11

n++ = 20

m = 11

n = 21

6. Conditional Operator

The character pair ? : is a ternary operatory available in Java. This operator is used to

construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then

the expression exp2 is evaluated and becomes the value of the conditional expression. If exp1

is false, exp3 is evaluated and its value becomes the value of the conditional expression. None

that only one of the expressions (either exp2 or exp3) is evaluated. For example, consider the

following statements:

a = 10;

b = 15;

x = (a > b) ? a : b;

In this example, x will be assigned the value of b. This can be achieved using the

if….else statement as follows:

if(a > b)

x = a;

else

x = b;

7. Bitwise Operators

Java has a distinction of supporting special operators known as bitwise operators for

manipulation of data at values of bit level. These operators are used for testing the bits, or

shifting them to the right or left. Bitwise operators may not be applied to float or double.

4. Comments

The comments are the statements in a program that are not executed by the compiler and interpreter.

Why do we use comments in a code?

Comments are used to make the program more readable by adding the details of the code.

It makes easy to maintain the code and to find the errors easily.

The comments can be used to provide information or explanation about the variable, method, class, or any

statement.

It can also be used to prevent the execution of program code while testing the alternative code.

Types of Java Comments

There are three types of comments in Java.

1) Single Line Comment

2) Multi Line Comment

3) Documentation Comment

1) Java Single Line Comment

The single-line comment is used to comment only one line of the code. It is the widely used and easiest

way of commenting the statements.

Single line comments starts with two forward slashes (//). Any text in front of // is not executed by Java.

Syntax:

//This is single line comment

Example

public class CommentExample1 {

public static void main(String[] args) {

int i=10; // i is a variable with value 10

System.out.println(i); //printing the variable i

}

}

Output:

10

2) Java Multi Line Comment

The multi-line comment is used to comment multiple lines of code. It can be used to explain a complex

code snippet or to comment multiple lines of code at a time (as it will be difficult to use single-line

comments there).

Multi-line comments are placed between /* and */. Any text between /* and */ is not executed by Java.

Syntax:

/*

This

is

multi line

comment

*/

Example

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and

 print variable in java. */

 int i=10;

 System.out.println(i);

/* float j = 5.9;

 float k = 4.4;

 System.out.println(j + k); */

}

}

Output:

10

3) Java Documentation Comment

Documentation comments are usually used to write large programs for a project or software application as

it helps to create documentation API. These APIs are needed for reference, i.e., which classes, methods,

arguments, etc., are used in the code.

To create documentation API, we need to use the javadoc tool. The documentation comments are placed

between /** and */.

Syntax:

/**

*

*We can use various tags to depict the parameter

*or heading or author name

*We can also use HTML tags

*

*/

https://www.tpointtech.com/creating-api-document
https://www.tpointtech.com/creating-api-document
https://www.tpointtech.com/creating-api-document

Arithmetic Expressions

 An arithmetic expression is a combination of variables, constants, and operators

arranged as per the syntax of the language. We have used a number of simple expression in the

examples discussed so far. Java can handle any complex mathematical expressions. Some of

the examples of Java expressions are shown in Table shows that Java does not have

an operator for exponentiation.

Evaluation of Expression

Evaluation of Expressions Expressions are evaluated using an assignment statement of the form

variable = expressions;

variable is any valid Java variable name. When the statement is encountered, the expression is evaluated

first and the result then replaces the previous value of the variable on the left-hand side. All variables used

in the expression must be assigned value before evaluation is attempted. Examples of evaluation

statements are

x = a*b–c;

y = b/c*a;

z = a–b/c+d;

The blank space around an operator is optional and is added only to improve readability. When these

statements are used in program, the variables a,b,c and d must be defined before they are used in the

expressions.

Type Casting

Type casting in Java is a fundamental concept that allows developers to convert data from

one data type to another. It is essential for handling data in various situations, especially when

dealing with different types of variables, expressions, and methods. In Java, type casting is a

method or process that converts a data type into another data type in both ways manually and

automatically. The automatic conversion is done by the compiler and manual conversion

performed by the programmer.

Convert a value from one data type to another data type is known as type casting.

Rules of Typecasting

Widening Conversion (Implicit)

No explicit notation is required.

Conversion from a smaller data type to a larger data type is allowed.

No risk of data loss.

Narrowing Conversion (Explicit)

Requires explicit notation using parentheses and casting.

Conversion from a larger data type to a smaller data type is allowed.

Risk of data loss due to truncation.

Use Cases

Typecasting is commonly used in various scenarios, such as:

Converting between primitive data types.

Handling data in expressions and calculations.

Interacting with different methods and APIs that expect specific data types.

Types of Type Casting

There are two types of type casting:

Widening Type Casting

Narrowing Type Casting

Widening Type Casting

Converting a lower data type into a higher one is called widening type casting. It is also known

as implicit conversion or casting down. It is done automatically. It is safe because there is no

chance to lose data. It takes place when:

Both data types must be compatible with each other.

The target type must be larger than the source type.

byte -> short -> char -> int -> long -> float -> double

Why Widening Type Casting?

Widening conversion needs to be implemented in order to enable Java to work smoothly with

different data types. It creates unbroken workflows when an element of a smaller type is used in

a context that needs a larger type. The reason for generalizing the narrower type is in order not

to lose any data by converting the smaller type to the larger one, and preserving the whole

information.

Types of Widening Type Casting

The common procedure of the Widening type casting is about conversion from primitive to

primitive data types in Java.

From byte to short, int, long, float, or double.

From data to type int, long, float, or double.

Char to int, long, float, or double can be converted.

Various other types like int, long, float, or double can also be used.

Key Points to Note

Widening typecasting is performed automatically by the Java compiler when converting from a

smaller data type to a larger data type.

No explicit notation, such as casting, is required for widening typecasting.

Widening conversions are always safe and do not result in any loss of data.

Widening typecasting is commonly used in assignments, expressions, and method invocations

where data of different types interact.

For example, the conversion between numeric data type to char or Boolean is not done automatically.

Also, the char and Boolean data types are not compatible with each other.

WideningTypeCastingExample.java

public class WideningTypeCastingExample

{

public static void main(String[] args)

{

int x = 7;

//automatically converts the integer type into long type

long y = x;

//automatically converts the long type into float type

float z = y;

System.out.println("Before conversion, int value "+x);

System.out.println("After conversion, long value "+y);

System.out.println("After conversion, float value "+z);

}

}

Output

Before conversion, the value is: 7

After conversion, the long value is: 7

After conversion, the float value is: 7.0

Narrowing Type Casting

Converting a higher data type into a lower one is called narrowing type casting. It is also known

as explicit conversion or casting up. It is done manually by the programmer. If we do not perform

casting, then the compiler reports a compile-time error.

double -> float -> long -> int -> char -> short -> byte

Why Narrowing Type casting?

Narrowing typecasting becomes necessary when we need to convert data from a larger data type to a

smaller one. It often occurs when we are working with data of different sizes and need to fit larger values

into smaller containers.

In the following example, we have performed the narrowing type casting two times. First, we have

converted the double type into long data type after that long data type is converted into int type.

NarrowingTypeCastingExample.java

public class NarrowingTypeCastingExample

{

public static void main(String args[])

{

double d = 166.66;

//converting double data type into long data type

long l = (long)d;

//converting long data type into int data type

int i = (int)l;

System.out.println("Before conversion: "+d);

//fractional part lost

System.out.println("After conversion into long type: "+l);

//fractional part lost

System.out.println("After conversion into int type: "+i);

}

}

Output

Before conversion: 166.66

After conversion into long type: 166

After conversion into int type: 166

Command Line Argument

The Java command-line argument is an argument i.e. passed at the time of running the java program.

The arguments passed from the console can be received in the java program and it can be used as an

input.

So, it provides a convenient way to check the behavior of the program for the different values. You can

pass N (1,2,3 and so on) numbers of arguments from the command prompt.

Simple Example of Command Line Arguments in java

In this example, we are receiving only one argument and printing it. To run this java program, you must

pass at least one argument from the command prompt.

Example

class CommandLineExample{

public static void main(String args[]){

System.out.println("Your first argument is: "+args[0]);

}

}

compile by > javac CommandLineExample.java

run by > java CommandLineExample sonoo

Output:

Your first argument is: sonoo

Scanner Class

Scanner class in Java is found in the java.util package. Java provides various ways to read

input from the keyboard, the java.util.Scanner class is one of them.

The Java Scanner class breaks the input into tokens using a delimiter which is whitespace by

default. It provides many methods to read and parse various primitive values.

The Java Scanner class is widely used to parse text for strings and primitive types using a

regular expression. It is the simplest way to get input in Java. By the help of Scanner in Java,

we can get input from the user in primitive types such as int, long, double, byte, float, short,

etc.

The Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

The Java Scanner class provides nextXXX() methods to return the type of value such as

nextInt(), nextByte(), nextShort(), next(), nextLine(), nextDouble(), nextFloat(),

nextBoolean(), etc. To get a single character from the scanner, you can call next().charAt(0)

method which returns a single character.

Example

import java.util.Scanner; // import the Scanner class

class Main {

 public static void main(String[] args) {

 Scanner myObj = new Scanner(System.in);

 String userName;

 // Enter username and press Enter

 System.out.println("Enter username");

 userName = myObj.nextLine();

 System.out.println("Username is: " + userName);

 }

}

Java Scanner Methods to Take Input

The Scanner class provides various methods that allow us to read inputs of different types.

Method Description

nextInt() reads an int value from the user

nextFloat() reads a float value form the user

nextBoolean()
reads a boolean value from the

user

nextLine() reads a line of text from the user

next() reads a word from the user

nextByte() reads a byte value from the user

nextDouble() reads a double value from the user

nextShort() reads a short value from the user

nextLong() reads a long value from the user

Example of different methods to read data

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 Scanner myObj = new Scanner(System.in);

 System.out.println("Enter name, age and salary:");

 // String input

 String name = myObj.nextLine();

 // Numerical input

 int age = myObj.nextInt();

 double salary = myObj.nextDouble();

 // Output input by user

 System.out.println("Name: " + name);

 System.out.println("Age: " + age);

 System.out.println("Salary: " + salary);

 }

}

Conditional statement

The Java if statement is used to test the condition. It checks boolean condition: true or false. There are

various types of if statement in Java.

if statement

if-else statement

if-else-if ladder

nested if statement

if Statement

The Java if statement tests the condition. It executes the if block if condition is true.

Syntax:

if(condition){

//code to be executed

}

Example

//Java Program to demonstate the use of if statement.

public class Main {

public static void main(String[] args) {

 //defining an 'age' variable

 int age=20;

 //checking the age

 if(age>18){

 System.out.print("Age is greater than 18");

 }

}

}

Output

Age is greater than 18

if-else Statement

The if-else statement allows Java programs to handle both true and false conditions. If the condition

inside the if statement evaluates to false, the else block is executed instead.

Using if-else statements in Java improves decision-making in programs by executing different code paths

based on conditions.

Syntax of if-else Statement

if(Boolean_expression)

{

// Executes when the Boolean expression is true

}else {

// Executes when the Boolean expression is false

}

Example

//Java Program to demonstrate the use of if-else statement.

//It is a program of odd and even number.

public class Main {

public static void main(String[] args) {

 //defining a variable

 int number=13;

 //Check if the number is divisible by 2 or not

 if(number%2==0){

 System.out.println("even number");

 }else{

 System.out.println("odd number");

 }

}

}

Output

Odd number

Ladder if (if else if) Statements

The if...else if...else statement is used for executing multiple code blocks based on the given conditions

(Boolean expressions).

An if statement can be followed by an optional else if...else statement, which is very useful to test

various conditions using a single if...else if statement.

Syntax

if(Boolean_expression 1) { // Executes when the Boolean expression 1 is true }else

if(Boolean_expression 2) { // Executes when the Boolean expression 2 is true }else

if(Boolean_expression 3) { // Executes when the Boolean expression 3 is true }else { // Executes when

the none of the above condition is true. }

Example

public class Main {

public static void main(String[] args) {

 int marks=65;

 if(marks<50){

 System.out.println("fail");

 }

 else if(marks>=50 && marks<60){

 System.out.println("D grade");

 }

 else if(marks>=60 && marks<70){

 System.out.println("C grade");

 }

 else if(marks>=70 && marks<80){

 System.out.println("B grade");

 }

 else if(marks>=80 && marks<90){

 System.out.println("A grade");

 }else if(marks>=90 && marks<100){

 System.out.println("A+ grade");

 }else{

 System.out.println("Invalid!");

 }

}

}

Program to check POSITIVE, NEGATIVE or ZERO using if-else-if:

public class Main {

public static void main(String[] args) {

 int number=-13;

 if(number>0){

 System.out.println("POSITIVE");

 }else if(number<0){

 System.out.println("NEGATIVE");

 }else{

 System.out.println("ZERO");

 }

}

}

Nested if-else Statement

The nested if else statement is used for better decision-making when other conditions are to be checked

when a given condition is true. In the nested if else statement, you can have an if-else statement block the

another if (or, else) block.

Syntax

if(condition1){

// code block

if(condition2){

//code block

}

}

Example 1

public class Main {

public static void main(String[] args) {

 //Creating two variables for age and weight

 int age=20;

 int weight=80;

 //applying condition on age and weight

 if(age>=18){

 if(weight>50){

 System.out.println("You are eligible to donate blood");

 }

 }

}}

Example 2

//Java Program to demonstrate the use of Nested If Statement.

public class Main {

public static void main(String[] args) {

 //Creating two variables for age and weight

 int age=25;

 int weight=48;

 //applying condition on age and weight

 if(age>=18){

 if(weight>50){

 System.out.println("You are eligible to donate blood");

 } else{

 System.out.println("You are not eligible to donate blood");

 }

 } else{

 System.out.println("Age must be greater than 18");

 }

}

}

Switch statement
The switch statement executes one statement from multiple conditions. It is like if-else-if ladder statement.

The switch statement works with byte, short, int, long, enum types, String and some wrapper types like

Byte, Short, Int, and Long. Since Java 7, we can use strings in the switch statement.

The switch statement can be described as control flow type statement which is utilized for manipulating the

flow of program execution and invoking various branches of code using the value of an expression.

In other words, the switch statement tests the equality of a variable against multiple values.

Points to Remember
There can be one or N number of case values for a switch expression.

The case value must be of switch expression type only. The case value must be literal or constant. It

doesn't allow variables.

The case values must be unique. In case of duplicate value, it renders compile-time error.

The Java switch expression must be of byte, short, int, long (with its Wrapper type), enums and string.

Each case statement can have a break statement which is optional. When control reaches to the break

statement, it jumps the control after the switch expression. If a break statement is not found, it executes the

next case.

The case value can have a default label which is optional.

In Java, switch statement mainly provides a more detailed alternative that avoids the usage of nested or

several if-else statements when associated with an individual variable.

The syntax of the Java switch statement contains the switch keyword which is followed by the expression

that needs to be evaluated using parentheses. The mentioned expression must definitely evaluate to a

definite data type which is primitive such as int, char, or enum.

Syntax:

switch(expression){

case value1:

 //code to be executed;

 break; //optional

case value2:

 //code to be executed;

 break; //optional

......

default:

 code to be executed if all cases are not matched;

}

In Java, the switch statement can also contain a default label. The default label will be executed only

in the situation when none of the case labels are matching the expressions value. The declaring of

default label is considered optional, but can be useful in the events of unexpected values or inputs.

public class Main {

public static void main(String[] args) {

 //Declaring a variable for switch expression

 int number=20;

 //Switch expression

 switch(number){

 //Case statements

 case 10: System.out.println("10");

 break;

 case 20: System.out.println("20");

 break;

 case 30: System.out.println("30");

 break;

 //Default case statement

 default:System.out.println("Not in 10, 20 or 30");

 }

}

}

Looping statement

In programming, loops play a pivotal role in iterating over a set of statements repeatedly until

a specific condition is met. One such loop in Java is the 'while' loop, known for its simplicity

and versatility.

Types of Loops

While Loop

Do while Loop

For Loop

The Java while loop is used to iterate a part of the program repeatedly until the

specified Boolean condition is true. As soon as the Boolean condition becomes false,

the loop automatically stops.

The while loop is considered as a repeating if statement. If the number of iteration is

not fixed, it is recommended to use the while loop.

Syntax:

while (condition){

//code to be executed

Increment / decrement statement

}

Here, condition is a boolean expression that determines whether the loop should continue iterating or not.

The statements within the curly braces are executed repeatedly as long as the condition evaluates to true.

The different parts of do-while loop:

1. Condition: It is an expression which is tested. If the condition is true, the loop body is executed and

control goes to update expression. When the condition becomes false, we exit the while loop.

Example:

i <=100

2. Update Expression: Every time the loop body is executed, this expression increments or decrements

loop variable.

Example:

i++;

Basic Usage

Let's delve into a simple example to grasp the fundamental usage of a while loop. Consider a scenario

where we want to print numbers from 1 to 5:

int i = 1;

while (i <= 5) {

 System.out.println(i);

 i++;

}

In this example, the loop starts with i initialized to 1. The condition i <= 5 ensures that the loop continues

as long as i is less than or equal to 5. Within each iteration, i is incremented by 1, ensuring that the loop

doesn't become infinite.

Java While Loop Flowchart

Here, the important thing about while loop is that, sometimes it may not even execute. If the condition to

be tested results into false, the loop body is skipped and first statement after the while loop will be

executed.

Example

public class Main {

public static void main(String[] args) {

 int i=1;

 while(i<=10){

 System.out.println(i);

 i++;

 }

}

}

// Java Program to print factorial of 5 using while loop

public class Main {

 public static void main(String[] args) {

 // Declare a variable to 5. This is the number whose factorial is to be calculated.

 int number = 5;

 // Declare a variable 'factorial' and initialize it to 1. This variable will hold the result of the factorial c

alculation.

 int factorial = 1;

 // Declare a variable 'i' and initialize it to 1.

 int i = 1;

 //Start a while loop

 while(i <= number) {

 // Multiply the current value of 'factorial' by 'i' and store the result back in 'factorial'.

 factorial *= i; // This is equivalent to factorial = factorial * i;

 i++;

 }

 // Print the calculated factorial to the console.

 System.out.println("Factorial of " + number + " is: " + factorial);

 }

}

do-while Loop

The Java do-while loop is used to iterate a part of the program repeatedly, until the specified condition is

true. If the number of iteration is not fixed and you must have to execute the loop at least once, it is

recommended to use a do-while loop.

Java do-while loop is called an exit control loop. Therefore, unlike while loop and for loop, the do-while

check the condition at the end of loop body. The Java do-while loop is executed at least once because

condition is checked after loop body.

Syntax:

do{

//code to be executed / loop body

//update statement

}while (condition);

The different parts of do-while loop:

1. Condition: It is an expression which is tested. If the condition is true, the loop body is executed and

control goes to update expression. As soon as the condition becomes false, loop breaks automatically.

i <=100

2. Update expression: Every time the loop body is executed, the this expression increments or decrements

loop variable.

i++;

Note: The do block is executed at least once, even if the condition is false.

Flow chart

//Simple do-while example in Java

public class Main {

public static void main(String[] args) {

 //initialization

 int i=1;

 //do-while loop

 do{

 System.out.println(i);

 i++;

 }while(i<=10);

}

}

For loop

For loops in Java are a fundamental control structure used to repeat a block of code a specific number of

times or iterate through a sequence of values. They are incredibly useful for tasks that require repetition,

such as processing items in an array, generating repetitive output, or executing a block of code a

predetermined number of times.

The Java for loop is used to iterate a part of the program several times. If the number of iteration is fixed, it

is recommended to use for loop.

A simple for loop is the same as C/C++. We can initialize the variable, check condition and

increment/decrement value. It consists of four parts:

Initialization: It is the initial condition which is executed once when the loop starts. Here, we can initialize

the variable, or we can use an already initialized variable. It is an optional condition.

Condition: It is the second condition which is executed each time to test the condition of the loop. It

continues execution until the condition is false. It must return boolean value either true or false. It is an

optional condition.

Increment/Decrement: It increments or decrements the variable value. It is an optional condition.

Statement: The statement of the loop is executed each time until the second condition is false.

Syntax:

for(initialization; condition; increment/decrement){

//statement or code to be executed

}

Flowchart

//Java Program to demonstrate the example of for loop

//which prints table of 1

public class Main {

public static void main(String[] args) {

 //Code of Java for loop

 for(int i=1;i<=10;i++){

 System.out.println(i);

 }

}

}

Jump statement

Jump statements in Java provide a way to modify the normal flow of control within loops or switch

statements. They allow you to jump to a specific point in your code, skip iterations of a loop, or exit a loop

or method altogether.

Break Statement

The „break‟ statement in Java is a jump statements that allows you to exit a loop or switch statement

prematurely. It provides a way to break out of the current code block and continue execution outside of it.

Flow Chart of Break Statement

Example

public class BreakExample {

 public static void main(String[] args) {

 int choice = 2;

 switch (choice) {

 case 1:

 System.out.println("You selected option 1.");

 break;

 case 2:

 System.out.println("You selected option 2.");

 break;

 case 3:

 System.out.println("You selected option 3.");

 break;

 default:

 System.out.println("Invalid choice.");

 break;

 }

 System.out.println("End of program.");

 }

}

Output

You selected option 2.

Continue Statement

In Java, the continue statement is used to skip the remaining code in a loop (will study later in the next

blog) iteration and go to the next iteration. It allows you to bypass specific parts of the loop‟s code block

based on a condition.

When a given condition is met, the continue statement in Java programming allows you to skip the

remaining code within a loop‟s iteration. It allows you to manage scenarios when you want to bypass

specific iterations and continue with the next iteration of the loop more efficiently. You can regulate the

flow of execution and optimize your code based on certain conditions or requirements in this manner.

Flowchart of the Continue Statement

public class ContinueExample {

 public static void main(String[] args) {

 // Imagine you are counting from 1 to 10

 for (int i = 1; i <= 10; i++) {

 // Check if the current number is divisible by 2

 if (i % 2 == 0) {

 // Skip the iteration if the number is divisible by 2

 continue;

 }

 // Print the current number

 System.out.println(i);

 }

 }

}

Output

1

3

5

7

9

Return Statement

In Java, the return statement is used to exit a method and provide a result or value back to the caller. It‟s

like completing a task and giving something in return.

For example, let‟s say you have a method called calculateTotalPrice that calculates the total price of a pizza

order. After performing the necessary calculations, you use the return statement to send the final price back

to the code that called the method. This way, the calling code can use the returned value for further

processing or display.

Flow Chart

Example

public class PizzaDelivery {

 public static double calculateTotalPrice(int pizzaCount) {

 double pricePerPizza = 12.99;

 double totalPrice = pizzaCount * pricePerPizza;

 // Return the calculated total price

 return totalPrice;

 }

 public static void main(String[] args) {

 int numberOfPizzas = 3;

 double total = calculateTotalPrice(numberOfPizzas);

 System.out.println("Total price: $" + total);

 }

}

Output

Total price: 38.97

Operator Precedence & Associativity

Each operator in Java has a precedence associated with it. This precedence is used to determine how an

expression involving more than one operator is evaluated. There are distinct levels of precedence and an

operator may belong to one of the levels. The operators at the higher level of precedence are evaluated

first. The operators of the same precedence are evaluated either from left to right or from right to left,

depending on the level. This is known as the associativity property of an operator. Table 3.11 provides a

complete lists of operators, their precedence levels, and their rules of association. The groups are listed in

the order of decreasing precedence (rank 1 indicates the highest precedence level and 14 the lowest).

It is very important to note carefully, the order of precedence and associativity of

operators. Consider the following conditional statement:

 if(x == 10+15 && y<10)

 The precedence rules say that the addition operator has a higher priority than the logical

operator (&&) and the relational operator (== and <). Therefore, the addition of 10 and 15 is

executed first. This is equivalent to:

 if(x == 25 &&y<10)

 The next step is to determine whether x is equal to 25 and y is less than 10. If we assume

a value fo 20 for x and 5 for y, then

 x == 25 is FALSE

 y < 10 is TRUE

 Note that since the operator < enjoys a higher priority compared to ==, y<10 is tested

first and then x = = 25 is tested.

 Finally we get:

 if(FALSE && TRUE)

 Because one of the conditions FALSE, the compound condition if FALSE.

